login
A196517
Decimal expansion of the number x satisfying x*e^x=4.
5
1, 2, 0, 2, 1, 6, 7, 8, 7, 3, 1, 9, 7, 0, 4, 2, 9, 3, 9, 2, 1, 2, 0, 7, 4, 1, 6, 5, 4, 9, 5, 1, 5, 3, 4, 4, 7, 5, 0, 1, 5, 1, 2, 5, 2, 1, 8, 2, 9, 6, 2, 5, 9, 8, 1, 7, 3, 9, 2, 0, 3, 5, 9, 0, 7, 0, 0, 6, 3, 4, 1, 3, 2, 9, 8, 1, 7, 7, 2, 6, 7, 7, 2, 2, 7, 8, 2, 6, 1, 0, 4, 9, 7, 6, 5, 6, 8, 3, 7, 7
OFFSET
1,2
EXAMPLE
1.2021678731970429392120741654951534475015125218296259...
MATHEMATICA
Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A030175 *)
t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196515 *)
t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196516 *)
t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196517 *)
t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196518 *)
t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196519 *)
RealDigits[LambertW[4], 10, 50][[1]] (* G. C. Greubel, Nov 16 2017 *)
PROG
(PARI) lambertw(4) \\ G. C. Greubel, Nov 16 2017
CROSSREFS
Sequence in context: A254372 A354158 A363580 * A298141 A160210 A174610
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 03 2011
STATUS
approved