login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196517
Decimal expansion of the number x satisfying x*e^x=4.
5
1, 2, 0, 2, 1, 6, 7, 8, 7, 3, 1, 9, 7, 0, 4, 2, 9, 3, 9, 2, 1, 2, 0, 7, 4, 1, 6, 5, 4, 9, 5, 1, 5, 3, 4, 4, 7, 5, 0, 1, 5, 1, 2, 5, 2, 1, 8, 2, 9, 6, 2, 5, 9, 8, 1, 7, 3, 9, 2, 0, 3, 5, 9, 0, 7, 0, 0, 6, 3, 4, 1, 3, 2, 9, 8, 1, 7, 7, 2, 6, 7, 7, 2, 2, 7, 8, 2, 6, 1, 0, 4, 9, 7, 6, 5, 6, 8, 3, 7, 7
OFFSET
1,2
EXAMPLE
1.2021678731970429392120741654951534475015125218296259...
MATHEMATICA
Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A030175 *)
t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196515 *)
t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196516 *)
t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196517 *)
t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196518 *)
t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196519 *)
RealDigits[LambertW[4], 10, 50][[1]] (* G. C. Greubel, Nov 16 2017 *)
PROG
(PARI) lambertw(4) \\ G. C. Greubel, Nov 16 2017
CROSSREFS
Sequence in context: A254372 A354158 A363580 * A298141 A160210 A174610
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 03 2011
STATUS
approved