login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174610
Decimal expansion (1/log(Phi))*sum(k>=1,log((2^k*Phi^2+Phi)/(2^k*Phi^2-1)))=2.02197... where Phi=(1+sqrt(5))/2.
0
2, 0, 2, 1, 9, 7, 9, 9, 4, 2, 5, 3, 8, 0, 1, 3, 4, 7, 8, 2, 9, 1, 1, 6, 9, 5, 3, 9, 5, 3, 7, 3, 9, 5, 8, 5, 4, 6, 3, 9, 3, 4, 4, 3, 0, 7, 7, 8, 9, 3, 5, 8, 8, 7, 2, 4, 1, 1, 2, 2, 2, 4, 9, 2, 5, 8, 0, 4, 8, 6, 9, 8, 8, 4, 9, 4, 0, 0, 1, 5, 1, 5, 2, 2, 7, 4, 5, 1, 5, 2, 5, 1, 6, 3, 6, 8, 3, 6, 3, 0, 4, 4, 5, 0, 9
OFFSET
1,1
LINKS
Brigitte Vallée, Digits and continuants in Euclidean algorithms. Ergodic vs tauberian theorems, Journal de théorie des nombres de Bordeaux 12 (2000), 519-558.
MATHEMATICA
digits = 105; $MaxExtraPrecision = digits + 5; NSum[ Log[ (GoldenRatio^2*2^k + GoldenRatio)/(2^k*GoldenRatio^2 - 1)], {k, 1, Infinity}, NSumTerms -> digits, WorkingPrecision -> digits + 5]/Log[GoldenRatio] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 04 2013 *)
CROSSREFS
Sequence in context: A196517 A298141 A160210 * A375108 A373924 A028928
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Mar 23 2010
STATUS
approved