login
A028928
Theta series of quadratic form (or lattice) with Gram matrix [ 3, 1; 1, 5 ].
3
1, 0, 0, 2, 0, 2, 2, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 6, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 6, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 6, 2, 0, 0, 0, 0, 2, 0, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The number of integer solutions (x, y) to n = 3*x^2 + 2*x*y + 5*y^2, discriminant -56. - Ray Chandler, Jul 12 2014
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(q^3) * phi(q^42) + 2*q^5 * chi(q) * psi(-q^3) * chi(q^14) * psi(-q^42) = phi(q^6) * phi(q^21) + 2*q^3 * chi(q^2) * psi(-q^6) * chi(q^7) * psi(-q^21) = phi(q^2) * phi(q^7) - 2*q^2 * phi(-q^4) * psi(q^7) * chi(-q) / chi(-q^28) in powers of q where phi(), psi(), chi() are Ramanujan theta functions - Michael Somos and Alex Berkovich, Jun 06 2011
Expansion of - phi(q) * phi(q^14) + 2 * chi(q) * f(-q^7) * f(-q^8) * chi(q^14) in powers of q where phi(), chi(), f() are Ramanujan theta functions - Michael Somos, Jun 22 2011
G.f.: Sum_{n, m in Z} x^(3*n*n + 2*n*m + 5*m*m).
EXAMPLE
G.f. = 1 + 2*q^3 + 2*q^5 + 2*q^6 + 2*q^10 + 2*q^12 + 2*q^13 + 2*q^19 + 2*q^20 + 2*q^21 + 2*q^24 + 2*q^26 + 4*q^27 + 2*q^35 + 2*q^38 + 2*q^40 + 2*q^42 + 6*q^45 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[ n == 0], If[ -1 != KroneckerSymbol[ -7, n / 7^IntegerExponent[ n, 7]], 0, Sum[ KroneckerSymbol[ -14, d], { d, Divisors @ n}]]]; (* Michael Somos, Jul 13 2011 *)
PROG
(PARI) {a(n) = if( n<1, n==0, qfrep([3, 1; 1, 5], n)[n] * 2)}; /* Michael Somos, Jun 06 2011 */
(PARI) {a(n) = if( n<1, n==0, (-1 == kronecker( -7, n / 7^valuation( n, 7))) * sumdiv( n, d, kronecker( -14, d)))}; /* Michael Somos, Jun 22 2011 */
CROSSREFS
Cf. A106915.
Sequence in context: A174610 A375108 A373924 * A343723 A260149 A091379
KEYWORD
nonn
AUTHOR
STATUS
approved