|
|
A028931
|
|
Strings giving winning positions in Tchoukaillon (or Mancala) solitaire.
|
|
6
|
|
|
0, 1, 20, 21, 310, 311, 4200, 4201, 4220, 4221, 53110, 53111, 642000, 642001, 642020, 642021, 642310, 642311, 7531200, 7531201, 7531220, 7531221, 86420110, 86420111, 86424000, 86424001, 86424020, 86424021, 86424310, 86424311
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) gives string listing winning position for n stones.
Sum of numbers in a(n) is equal to n.
Using the chromatic (tet-12) scale, (if C=0, 12, 24...) all integers correspond to pitches C, C#, G#, A, Bb, B, a recursive pattern that evenly bisects the octave and avoids the tritone (IC6). - Nik Bizzell-Browning, Apr 27 2019
|
|
LINKS
|
Table of n, a(n) for n=0..29.
Nik Bizzell-Browning, Tchoukaillon solitaire sequence, Chromatic pitch table and example.
D. M. Broline and _Daniel E. Loeb_, The combinatorics of Mancala-Type games: Ayo, Tchoukaillon and 1/Pi, J. Undergrad. Math. Applic., vol. 16 (1995), pp. 21-36.
|
|
FORMULA
|
To get the next term, if rightmost 0 is in position i, replace it by i and subtract 1 from all earlier entries.
|
|
EXAMPLE
|
For example, a(10) = 53111; rightmost 0 is in position 6, so get 653111 -> a(11) = 642000.
|
|
CROSSREFS
|
Cf. A002491, A007952, A028920, A028931, A028932, A028933.
Sequence in context: A041834 A219798 A063013 * A063012 A302205 A041836
Adjacent sequences: A028928 A028929 A028930 * A028932 A028933 A028934
|
|
KEYWORD
|
nonn,nice,easy,base
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Erich Friedman
|
|
STATUS
|
approved
|
|
|
|