login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028933
Table of winning positions in Tchoukaillon (or Mancala) solitaire.
6
0, 1, 0, 2, 1, 2, 0, 1, 3, 1, 1, 3, 0, 0, 2, 4, 1, 0, 2, 4, 0, 2, 2, 4, 1, 2, 2, 4, 0, 1, 1, 3, 5, 1, 1, 1, 3, 5, 0, 0, 0, 2, 4, 6, 1, 0, 0, 2, 4, 6, 0, 2, 0, 2, 4, 6, 1, 2, 0, 2, 4, 6, 0, 1, 3, 2, 4, 6, 1, 1, 3, 2, 4, 6, 0, 0, 2, 1, 3, 5, 7, 1, 0, 2, 1, 3, 5, 7
OFFSET
0,4
COMMENTS
Table read by rows where b(n,i) = the number of counters in the i-th position from the store of the unique winning Tchoukaillon board having n total counters.
LINKS
D. Betten, Kalahari and the Sequence "Sloane No. 377", Annals Discrete Math., 37, 51-58, 1988.
D. M. Broline and Daniel E. Loeb, The combinatorics of Mancala-Type games: Ayo, Tchoukaillon and 1/Pi, J. Undergrad. Math. Applic., vol. 16 (1995), pp. 21-36.
Brant Jones, Laura Taalman and Anthony Tongen, Solitaire Mancala Games and the Chinese Remainder Theorem, Amer. Math. Monthly, 120 (2013), 706-724.
FORMULA
Let p(n) be the minimum j such that b(n,j) = 0. (This is A028920.)
Directly from the rules of Tchoukaillon, we find b(n+1,i) = (b(n,i) - 1 for 1 <= i < p(n), i for i = p(n), and b(n,i) for i > p(n)).
Also, b(n,i) = (n - Sum_{j=1..(i-1)} b(n,j)) mod (i+1).
EXAMPLE
The rows of b(n,i) begin
n\i 1 2 3 4 5 6
1 1
2 0 2
3 1 2
4 0 1 3
5 1 1 3
6 0 0 2 4
7 1 0 2 4
8 0 2 2 4
9 1 2 2 4
10 0 1 1 3 5
11 1 1 1 3 5
12 0 0 0 2 4 6
13 1 0 0 2 4 6
14 0 2 0 2 4 6
15 1 2 0 2 4 6
16 0 1 3 2 4 6
17 1 1 3 2 4 6
MATHEMATICA
s[list_] := Module[{x = Append[list, 0], i = 1}, While[x[[i]] =!= 0, x[[i]] = x[[i]] - 1; i = i + 1]; x[[i]] = i; If[Last@x == 0, Most[x], x]]; Prepend[Flatten@NestList[s, {}, 20], 0] (* Birkas Gyorgy, Feb 26 2011 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Formulas added by Brant Jones, Oct 14 2013
STATUS
approved