OFFSET
0,4
COMMENTS
Table read by rows where b(n,i) = the number of counters in the i-th position from the store of the unique winning Tchoukaillon board having n total counters.
LINKS
D. Betten, Kalahari and the Sequence "Sloane No. 377", Annals Discrete Math., 37, 51-58, 1988.
D. M. Broline and Daniel E. Loeb, The combinatorics of Mancala-Type games: Ayo, Tchoukaillon and 1/Pi, J. Undergrad. Math. Applic., vol. 16 (1995), pp. 21-36.
Brant Jones, Laura Taalman and Anthony Tongen, Solitaire Mancala Games and the Chinese Remainder Theorem, Amer. Math. Monthly, 120 (2013), 706-724.
FORMULA
Let p(n) be the minimum j such that b(n,j) = 0. (This is A028920.)
Directly from the rules of Tchoukaillon, we find b(n+1,i) = (b(n,i) - 1 for 1 <= i < p(n), i for i = p(n), and b(n,i) for i > p(n)).
Also, b(n,i) = (n - Sum_{j=1..(i-1)} b(n,j)) mod (i+1).
EXAMPLE
The rows of b(n,i) begin
n\i 1 2 3 4 5 6
1 1
2 0 2
3 1 2
4 0 1 3
5 1 1 3
6 0 0 2 4
7 1 0 2 4
8 0 2 2 4
9 1 2 2 4
10 0 1 1 3 5
11 1 1 1 3 5
12 0 0 0 2 4 6
13 1 0 0 2 4 6
14 0 2 0 2 4 6
15 1 2 0 2 4 6
16 0 1 3 2 4 6
17 1 1 3 2 4 6
MATHEMATICA
s[list_] := Module[{x = Append[list, 0], i = 1}, While[x[[i]] =!= 0, x[[i]] = x[[i]] - 1; i = i + 1]; x[[i]] = i; If[Last@x == 0, Most[x], x]]; Prepend[Flatten@NestList[s, {}, 20], 0] (* Birkas Gyorgy, Feb 26 2011 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Formulas added by Brant Jones, Oct 14 2013
STATUS
approved