login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028934
Negative of numerator of y-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
3
0, 1, 5, -8, 435, 3612, 43355, 28076979, -331948240, 641260644409, 318128427505160, -66316334575107447, 588310630753491921045, 435912379274109872312968, 2181616293371330311419201915
OFFSET
0,3
LINKS
B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
FORMULA
P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028942(2n+1). - Seiichi Manyama, Nov 20 2016
0 = a(n)*a(n+8) -145*a(n+1)*a(n+7) +3225*a(n+2)*a(n+6) -18705*a(n+3)*a(n+5) +14964*a(n+4)*a(n+4) for all n in Z. - Michael Somos, Apr 13 2020
EXAMPLE
3P = (-1, -1). 5P = (1/4, -5/8). 7P = (-5/9, 8/27).
MATHEMATICA
a[ n_] := If[n == 0, 0, -Numerator[ #[[3]]/#[[1]]^3 & @ Nest[Function[z, Module[{w, x, y}, {w, x, y} = z; {w x, y^2 - x^3, -y (y^2 - x^3) - (w x)^3}]], {1, 1, 0}, 2 n - 1]]]; (* Michael Somos, Apr 13 2020 *)
PROG
(PARI) {a(n) = -numerator(ellmul(ellinit([0, 0, 1, -1, 0]), [0, 0], 2*n+1)[2])}; /* Michael Somos, Apr 13 2020 */
CROSSREFS
Sequence in context: A162571 A046490 A155214 * A297559 A195144 A175997
KEYWORD
sign,frac
STATUS
approved