login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028942
Negative of numerator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
8
0, 0, 1, 3, 5, -14, -8, 69, 435, 2065, 3612, -28888, 43355, 2616119, 28076979, -332513754, -331948240, 8280062505, 641260644409, 18784454671297, 318128427505160, -10663732503571536, -66316334575107447, 8938035295591025771
OFFSET
1,4
COMMENTS
We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives negated numerators of the y_n. - N. J. A. Sloane, Jan 27 2022
a(n) = A278314(n) up to sign. - Michael Somos, Nov 19 2016
REFERENCES
A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
LINKS
B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
FORMULA
P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).
EXAMPLE
3P = (-1, -1),
4P = (2, -3),
5P = (1/4, -5/8),
6P = (6, 14).
PROG
(PARI) - see A028940.
CROSSREFS
KEYWORD
sign,frac
AUTHOR
STATUS
approved