login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028943
Denominator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
11
1, 1, 1, 1, 8, 1, 27, 125, 343, 64, 12167, 24389, 205379, 2146689, 30959144, 274625, 3574558889, 50202571769, 553185473329, 4302115807744, 578280195945297, 1469451780501769, 238670664494938073, 13528653463047586625
OFFSET
1,5
COMMENTS
We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n. - N. J. A. Sloane, Jan 27 2022
REFERENCES
A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
LINKS
B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
FORMULA
P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).
EXAMPLE
5P = (1/4, -5/8).
PROG
(PARI) See A028940.
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
STATUS
approved