OFFSET
1,4
COMMENTS
We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n. - N. J. A. Sloane, Jan 27 2022
REFERENCES
A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..212
B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
FORMULA
P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
EXAMPLE
4P = P[4] = [2, -3].
P[1] to P[16] are [0, 0], [1, 0], [-1, -1], [2, -3], [1/4, -5/8], [6, 14], [-5/9, 8/27], [21/25, -69/125], [-20/49, -435/343], [161/16, -2065/64], [116/529, -3612/12167], [1357/841, 28888/24389], [-3741/3481, -43355/205379], [18526/16641, -2616119/2146689], [8385/98596, -28076979/30959144], [480106/4225, 332513754/274625]. - N. J. A. Sloane, Jan 27 2022
PROG
(PARI) \\ from N. J. A. Sloane, Jan 27 2022. To get the first 40 points P[n].
\\ define curve E
E = ellinit([0, 0, 1, -1, 0]) \\ y^2+y = x^3-x
P = vector(100)
P[1] = [0, 0]
for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
P
CROSSREFS
KEYWORD
sign,frac
AUTHOR
STATUS
approved