login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028940
a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 - x.
11
0, 1, -1, 2, 1, 6, -5, 21, -20, 161, 116, 1357, -3741, 18526, 8385, 480106, -239785, 12551561, -59997896, 683916417, 1849037896, 51678803961, -270896443865, 4881674119706, -16683000076735, 997454379905326
OFFSET
1,4
COMMENTS
We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n. - N. J. A. Sloane, Jan 27 2022
REFERENCES
A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
LINKS
B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
FORMULA
P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(-n) = a(n) = - A006769(n-1) * A006769(n+1) for all n in Z. - Michael Somos, Jul 28 2016
EXAMPLE
4P = P[4] = [2, -3].
P[1] to P[16] are [0, 0], [1, 0], [-1, -1], [2, -3], [1/4, -5/8], [6, 14], [-5/9, 8/27], [21/25, -69/125], [-20/49, -435/343], [161/16, -2065/64], [116/529, -3612/12167], [1357/841, 28888/24389], [-3741/3481, -43355/205379], [18526/16641, -2616119/2146689], [8385/98596, -28076979/30959144], [480106/4225, 332513754/274625]. - N. J. A. Sloane, Jan 27 2022
PROG
(PARI) \\ from N. J. A. Sloane, Jan 27 2022. To get the first 40 points P[n].
\\ define curve E
E = ellinit([0, 0, 1, -1, 0]) \\ y^2+y = x^3-x
P = vector(100)
P[1] = [0, 0]
for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
P
KEYWORD
sign,frac
STATUS
approved