login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028937
Denominator of x-coordinate of (2n)*P where P = (0,0) is the generator for rational points on the curve y^2 + y = x^3 - x.
5
1, 1, 1, 25, 16, 841, 16641, 4225, 13608721, 264517696, 12925188721, 5677664356225, 49020596163841, 158432514799144041, 62586636021357187216, 1870098771536627436025, 41998153797159031581158401, 15402543997324146892198790401
OFFSET
1,4
LINKS
B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
FORMULA
P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028941(2n). - Seiichi Manyama, Nov 19 2016
a(n) = a(-n) = b(n)*b(n+3) - b(n+1)*b(n+2) for all n in Z where b(n) = A006720(n). - Michael Somos, Mar 23 2022
EXAMPLE
a(4) = 25 where 8P = (21/25, -69/125).
PROG
(PARI) a(n)=denominator(ellmul(E, [0, 0], 2*n)[1]) \\ Charles R Greathouse IV, Mar 23 2022
CROSSREFS
Sequence in context: A339773 A040602 A281335 * A215537 A104790 A291429
KEYWORD
nonn,frac
STATUS
approved