Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 23 2022 16:18:59
%S 1,1,1,25,16,841,16641,4225,13608721,264517696,12925188721,
%T 5677664356225,49020596163841,158432514799144041,62586636021357187216,
%U 1870098771536627436025,41998153797159031581158401,15402543997324146892198790401
%N Denominator of x-coordinate of (2n)*P where P = (0,0) is the generator for rational points on the curve y^2 + y = x^3 - x.
%H Seiichi Manyama, <a href="/A028937/b028937.txt">Table of n, a(n) for n = 1..106</a>
%H LMFDB, <a href="https://www.lmfdb.org/EllipticCurve/Q/37/a/1">Elliptic Curve 37.a1 (Cremona label 37a1)</a>
%H B. Mazur, <a href="https://doi.org/10.1090/S0273-0979-1986-15430-3">Arithmetic on curves</a>, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
%F P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
%F a(n) = A028941(2n). - _Seiichi Manyama_, Nov 19 2016
%F a(n) = a(-n) = b(n)*b(n+3) - b(n+1)*b(n+2) for all n in Z where b(n) = A006720(n). - _Michael Somos_, Mar 23 2022
%e a(4) = 25 where 8P = (21/25, -69/125).
%o (PARI) a(n)=denominator(ellmul(E,[0,0],2*n)[1]) \\ _Charles R Greathouse IV_, Mar 23 2022
%Y Cf. A006720, A051138, A028936 (numerator), A028938, A028939, A028941.
%K nonn,frac
%O 1,4
%A _N. J. A. Sloane_