login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350622
a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
4
0, -1, 1, 2, -3, -2, 21, 11, -140, 209, 1740, -3629, -17139, 194438, 528157, -8338438, 15659721, 665838199, -1524968280, -50443970239, 791991662680, 8985658531079, -211327567932999, 38581695555082, 112336114570262877, -20672037869235082, -59711116955990028899, 1404304980033091755971, 63734020523767895773980, -2251247528715575677121711, -33058398375463796474831580
OFFSET
1,4
COMMENTS
We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1] + P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n.
REFERENCES
D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
EXAMPLE
P[1] to P[16] are [0, 0], [-1, -1], [1, -2], [2, 3], [-3/4, 1/8], [-2/9, -28/27], [21, -99], [11/49, 20/343], [-140/121, -931/1331], [209/400, -10527/8000], [1740/361, 76400/6859], [-3629/7569, 71117/658503], [-17139/36481, -7705242/6967871], [194438/38809, -97805561/7645373], [528157/1036324, 317884519/1054977832], [-8338438/7187761, -6053168484/19270387241]
PROG
(PARI) \\ To get the first 40 points P[n].
\\ define curve E
E = ellinit([0, 1, 1, 0, 0])
P[1] = [0, 0]
for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
P
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Jan 27 2022
STATUS
approved