Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jun 27 2022 23:11:37
%S 0,-1,1,2,-3,-2,21,11,-140,209,1740,-3629,-17139,194438,528157,
%T -8338438,15659721,665838199,-1524968280,-50443970239,791991662680,
%U 8985658531079,-211327567932999,38581695555082,112336114570262877,-20672037869235082,-59711116955990028899,1404304980033091755971,63734020523767895773980,-2251247528715575677121711,-33058398375463796474831580
%N a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
%C We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1] + P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n.
%D D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
%D A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
%e P[1] to P[16] are [0, 0], [-1, -1], [1, -2], [2, 3], [-3/4, 1/8], [-2/9, -28/27], [21, -99], [11/49, 20/343], [-140/121, -931/1331], [209/400, -10527/8000], [1740/361, 76400/6859], [-3629/7569, 71117/658503], [-17139/36481, -7705242/6967871], [194438/38809, -97805561/7645373], [528157/1036324, 317884519/1054977832], [-8338438/7187761, -6053168484/19270387241]
%o (PARI) \\ To get the first 40 points P[n].
%o \\ define curve E
%o E = ellinit([0,1,1,0,0])
%o P[1] = [0,0]
%o for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
%o P
%Y Cf. A028940-A028943, A350623-A350625.
%K sign,frac
%O 1,4
%A _N. J. A. Sloane_, Jan 27 2022