|
|
A350623
|
|
a(n) = denominator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
|
|
1
|
|
|
1, 1, 1, 1, 4, 9, 1, 49, 121, 400, 361, 7569, 36481, 38809, 1036324, 7187761, 67092481, 34117281, 6607901521, 68162766400, 385083543601, 9202249657441, 209674135856641, 4853089476046161, 7099336433764, 2600282294202480889, 60193393235277536641, 1371165544633857017809
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives denominators of the x_n.
|
|
REFERENCES
|
D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
|
|
LINKS
|
Table of n, a(n) for n=1..28.
|
|
PROG
|
(PARI) See A350622.
|
|
CROSSREFS
|
Cf. A028940-A028943, A350622-A350625.
Sequence in context: A129861 A055491 A032523 * A032760 A129970 A006830
Adjacent sequences: A350620 A350621 A350622 * A350624 A350625 A350626
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
N. J. A. Sloane, Jan 27 2022
|
|
STATUS
|
approved
|
|
|
|