login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028945
a(n) = A006720(n)^2 (squared terms of Somos-4 sequence).
5
1, 1, 1, 1, 4, 9, 49, 529, 3481, 98596, 2337841, 67387681, 6941055969, 384768368209, 61935294530404, 16063784753682169, 2846153597907293521, 2237394491744632911601, 1262082793174195430038441, 1063198259901027900600665796
OFFSET
0,5
COMMENTS
If first two 1's are omitted, denominator of x-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
LINKS
B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259; see p. 225.
FORMULA
P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 -b*a'/a).
a(n) = (- 4 a(n - 6) a(n - 1) + 29 a(n - 5) a(n - 2) + 116 a(n - 4) a(n - 3))/a(n-7). - Bill Gosper, May 14 2009
5P = (1/4, -5/8).
0 = a(n)*a(n+6) - 5*a(n+1)*a(n+5) + 4*a(n+2)*a(n+4) - 20*a(n+3)^2 for all n in Z. - Michael Somos, Apr 12 2020
MATHEMATICA
b[n_ /; 0 <= n <= 4] = 1; b[n_]:= b[n] = (b[n-1]*b[n-3] + b[n-2]^2)/b[n -4]; Table[(b[n])^2, {n, 0, 30}] (* G. C. Greubel, Feb 21 2018 *)
PROG
(PARI) {b(n) = if(n< 4, 1, (b(n-1)*b(n-3) + b(n-2)^2)/b(n-4))};
for(n=0, 30, print1((b(n))^2, ", ")) \\ G. C. Greubel, Feb 21 2018
(Magma) I:=[1, 1, 1, 1, 4, 9, 49]; [n le 7 select I[n] else (- 4*Self(n-6)*Self(n-1) + 29*Self(n-5)*Self(n-2) + 116*Self(n-4)*Self(n-3) )/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
CROSSREFS
KEYWORD
nonn,frac
EXTENSIONS
Edited by N. J. A. Sloane, May 14 2009
STATUS
approved