login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081069
a(n) = Lucas(4n)+2 = Lucas(2n)^2.
3
4, 9, 49, 324, 2209, 15129, 103684, 710649, 4870849, 33385284, 228826129, 1568397609, 10749957124, 73681302249, 505019158609, 3461452808004, 23725150497409, 162614600673849, 1114577054219524, 7639424778862809
OFFSET
0,1
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
LINKS
Pridon Davlianidze, Problem B-1270, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 2 (2020), p. 179; Four Telescopic Infinite Products, Solution to Problem B-1270 by Jason L. Smith, ibid., Vol. 59, No. 2 (2021), pp. 183-184.
Emrah Kılıç, Yücel Türker Ulutaş, and Neşe Ömür, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011) #11.5.6, Table 2, k=2.
FORMULA
a(n) = A005248(n)^2 = A056854(n)+2.
a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
a(n) = 2^(4*n)*(cos(Pi/5)^(2*n)+cos(3*Pi/5)^(2*n))^2. - Gary Detlefs, Dec 05 2010
From Gary Detlefs, Dec 06 2010: (Start)
a(n) = 7*a(n-1)-a(n-2)-10, n>1.
a(n) = 5*Sum_{k=0..n}(Fibonacci(4*k+2))+4, with offset -1. (End)
G.f.: -(9*x^2-23*x+4)/((x-1)*(x^2-7*x+1)). - Colin Barker, Jun 24 2012
Product_{n>=0} (1 + 5/a(n)) = 3*phi^2/2, where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 04 2024
MAPLE
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d, `, luc(4*n)+2) od: # James A. Sellers, Mar 05 2003
G:=(x, n)-> cos(x)^n +cos(3*x)^n: seq(simplify(2^(4*n)*G(Pi/5, 2*n)^2), n=0..19) # Gary Detlefs, Dec 05 2010
t:= n-> sum(fibonacci(4*k+2), k=0..n):seq(5*t(n)+4, n=-1..18); # Gary Detlefs, Dec 06 2010
MATHEMATICA
LucasL[4*Range[0, 20]]+2 (* Harvey P. Dale, Sep 09 2012 *)
PROG
(Magma) [ Lucas(2*n)^2: n in [0..70] ]; // Vincenzo Librandi, Apr 16 2011
CROSSREFS
Cf. A000032 (Lucas numbers), A001622, A005248, A056854.
Sequence in context: A231177 A110481 A030088 * A053967 A028945 A086541
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 04 2003
STATUS
approved