login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289622
Compound filter (prime signature & Carmichael's lambda): a(n) = P(A046523(n), A002322(n)), where P(n,k) is sequence A000027 used as a pairing function.
2
1, 3, 5, 14, 12, 27, 23, 44, 40, 42, 57, 90, 80, 61, 42, 187, 138, 148, 173, 117, 61, 111, 255, 324, 257, 142, 308, 148, 408, 558, 467, 773, 111, 216, 142, 856, 668, 259, 142, 375, 822, 625, 905, 222, 265, 357, 1083, 1323, 994, 477, 216, 265, 1380, 844, 306, 430, 259, 534, 1713, 2013, 1832, 601, 148, 3145, 142, 771, 2213, 363, 357
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A046523(n)+A002322(n))^2) - A046523(n) - 3*A002322(n)).
PROG
(PARI)
A002322(n) = lcm(znstar(n)[2]); \\ This function from Charles R Greathouse IV, Aug 04 2012
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A289622(n) = (1/2)*(2 + ((A046523(n)+A002322(n))^2) - A046523(n) - 3*A002322(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 16 2017
STATUS
approved