OFFSET
1,3
COMMENTS
Here multiplicative group of integers modulo n is decomposed as a product of cyclic groups C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i > j, like PARI-function znstar does. a(n) is then 2^{k_1} * 3^{k_2} * 5^{k_3} * ... * prime(m)^{k_m}.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..1024
Eric Weisstein's World of Mathematics, Modulo Multiplication Group.
Wikipedia, Multiplicative group of integers modulo n
FORMULA
EXAMPLE
For n=5, the multiplicative group modulo 5 is isomorphic to C_4, which does not factorize to smaller subgroups, thus a(5) = 2^4 = 16.
For n=8, the multiplicative group modulo 8 is isomorphic to C_2 x C_2, thus a(8) = 2^2 * 3^2 = 36.
For n=15, the multiplicative group modulo 15 is isomorphic to C_4 x C_2, thus a(15) = 2^4 * 3^2 = 144.
PROG
(PARI) A289625(n) = { my(m=1, p=2, v=znstar(n)[2]); for(i=1, length(v), m *= p^v[i]; p = nextprime(p+1)); (m); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 17 2017
STATUS
approved