login
A289628
Compound filter (for the structure of the multiplicative group of integers modulo n & prime signature of n): a(n) = P(A289626(n), A101296(n)), where P(n,k) is sequence A000027 used as a pairing function.
2
1, 2, 5, 8, 9, 12, 14, 41, 19, 18, 27, 50, 35, 25, 63, 99, 54, 40, 65, 86, 102, 42, 90, 203, 134, 52, 101, 131, 135, 128, 152, 342, 228, 75, 250, 221, 230, 88, 250, 399, 275, 182, 299, 271, 295, 117, 324, 517, 323, 185, 403, 295, 377, 146, 462, 623, 525, 168, 495, 549, 527, 187, 698, 728, 663, 343, 629, 460, 738, 370, 702, 889, 740, 273, 523, 590, 858, 370
OFFSET
1,2
COMMENTS
Here, instead of A046523 and A289625 we use as the components of a(n) their rgs-versions A101296 and A289626 because of the latter sequence's more moderate growth rate.
For all i, j: a(i) = a(j) => A286160(i) = A286160(j).
For all i, j: a(i) = a(j) => A289622(i) = A289622(j).
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A289626(n)+A101296(n))^2) - A289626(n) - 3*A101296(n)).
PROG
(Scheme) (define (A289628 n) (* (/ 1 2) (+ (expt (+ (A289626 n) (A101296 n)) 2) (- (A289626 n)) (- (* 3 (A101296 n))) 2)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 19 2017
STATUS
approved