login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286454
Compound filter (prime signature & prime signature of conjugated prime factorization): a(n) = P(A101296(n), A286621(n)), where P(n,k) is sequence A000027 used as a pairing function.
5
1, 5, 8, 9, 12, 32, 23, 20, 13, 49, 38, 51, 47, 82, 49, 35, 68, 51, 80, 72, 124, 140, 122, 74, 18, 175, 26, 111, 155, 334, 192, 65, 257, 280, 82, 116, 255, 329, 355, 99, 327, 570, 380, 177, 72, 469, 437, 132, 31, 72, 532, 216, 498, 74, 257, 144, 599, 634, 597, 448, 632, 745, 159, 119, 784, 1044, 782, 331, 907, 570, 863, 186, 905, 1039, 72, 384, 140, 1335, 1037
OFFSET
1,2
COMMENTS
Here, instead of A046523 and A278221 we use as the components of a(n) their rgs-versions A101296 and A286621 because of the latter sequence's moderate growth rates.
For all i, j: a(i) = a(j) => A286356(i) = A286356(j).
LINKS
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
a(n) = (1/2)*(2 + ((A101296(n)+A286621(n))^2) - A101296(n) - 3*A286621(n)).
PROG
(Scheme) (define (A286454 n) (* (/ 1 2) (+ (expt (+ (A101296 n) (A286621 n)) 2) (- (A101296 n)) (- (* 3 (A286621 n))) 2)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 14 2017
STATUS
approved