login
Compound filter (for the structure of the multiplicative group of integers modulo n & prime signature of n): a(n) = P(A289626(n), A101296(n)), where P(n,k) is sequence A000027 used as a pairing function.
2

%I #7 Jul 22 2017 10:12:44

%S 1,2,5,8,9,12,14,41,19,18,27,50,35,25,63,99,54,40,65,86,102,42,90,203,

%T 134,52,101,131,135,128,152,342,228,75,250,221,230,88,250,399,275,182,

%U 299,271,295,117,324,517,323,185,403,295,377,146,462,623,525,168,495,549,527,187,698,728,663,343,629,460,738,370,702,889,740,273,523,590,858,370

%N Compound filter (for the structure of the multiplicative group of integers modulo n & prime signature of n): a(n) = P(A289626(n), A101296(n)), where P(n,k) is sequence A000027 used as a pairing function.

%C Here, instead of A046523 and A289625 we use as the components of a(n) their rgs-versions A101296 and A289626 because of the latter sequence's more moderate growth rate.

%C For all i, j: a(i) = a(j) => A286160(i) = A286160(j).

%C For all i, j: a(i) = a(j) => A289622(i) = A289622(j).

%H Antti Karttunen, <a href="/A289628/b289628.txt">Table of n, a(n) for n = 1..65536</a>

%F a(n) = (1/2)*(2 + ((A289626(n)+A101296(n))^2) - A289626(n) - 3*A101296(n)).

%o (Scheme) (define (A289628 n) (* (/ 1 2) (+ (expt (+ (A289626 n) (A101296 n)) 2) (- (A289626 n)) (- (* 3 (A101296 n))) 2)))

%Y Cf. A000027, A046523, A101296, A286160, A289622, A289626, A286454.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jul 19 2017