login
A286360
Compound filter (prime signature & sum of the divisors): a(n) = P(A046523(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.
14
1, 8, 12, 49, 23, 142, 38, 239, 124, 259, 80, 753, 107, 412, 412, 1051, 173, 1237, 212, 1390, 672, 826, 302, 3427, 565, 1087, 1089, 2223, 467, 5080, 530, 4403, 1384, 1717, 1384, 7911, 743, 2086, 1836, 6352, 905, 7780, 992, 4477, 3928, 2932, 1178, 14583, 1774, 5368, 2932, 5898, 1487, 10177, 2932, 10177, 3576, 4471, 1832, 25711, 1955, 5056, 6567, 18019, 3922
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n)).
PROG
(PARI)
A000203(n) = sigma(n);
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A286360(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n));
for(n=1, 10000, write("b286360.txt", n, " ", A286360(n)));
(Scheme) (define (A286360 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A000203 n)) 2) (- (A046523 n)) (- (* 3 (A000203 n))) 2)))
(Python)
from sympy import factorint, divisor_sigma as D
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a(n): return T(a046523(n), D(n)) # Indranil Ghosh, May 12 2017
CROSSREFS
Cf. A007503, A065608 (sequences matching to this filter), also A000203, A046523, A161942, A286034, A286357.
Sequence in context: A229497 A009926 A022668 * A212815 A298901 A368125
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 10 2017
STATUS
approved