login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286460
Compound filter (2-adic valuation & sum of the divisors): a(n) = P(A001511(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.
7
1, 8, 7, 39, 16, 80, 29, 157, 79, 173, 67, 438, 92, 302, 277, 600, 154, 782, 191, 949, 497, 668, 277, 1957, 466, 905, 781, 1656, 436, 2630, 497, 2284, 1129, 1487, 1129, 4281, 704, 1832, 1541, 4282, 862, 4658, 947, 3658, 3004, 2630, 1129, 8133, 1597, 4373, 2557, 4953, 1432, 7262, 2557, 7507, 3161, 4097, 1771, 14368, 1892, 4658, 5357, 8785, 3487, 10442, 2279
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n)).
PROG
(PARI)
A000203(n) = sigma(n);
A001511(n) = (1+valuation(n, 2));
A286460(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n));
for(n=1, 10000, write("b286460.txt", n, " ", A286460(n)));
(Scheme) (define (A286460 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A000203 n)) 2) (- (A001511 n)) (- (* 3 (A000203 n))) 2)))
(Python)
from sympy import divisor_sigma as D
def a001511(n): return bin(n)[2:][::-1].index("1") + 1
def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2
def a(n): return T(a001511(n), D(n))
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 12 2017
CROSSREFS
Cf. A000593, A146076 (sequences matching to this filter), also A000203, A161942, A286260, A286357.
Sequence in context: A090099 A365486 A138809 * A317231 A237646 A288188
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 10 2017
STATUS
approved