login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138809
Expansion of 8 * eta(q)^7 / eta(q^7) + 49 * (eta(q) * eta(q^7))^3 in powers of q.
2
8, -7, -35, 56, -147, 168, 280, -7, -595, -511, 840, -854, 1176, 1176, -35, -1344, -2387, 2016, -2555, 2520, 3528, 56, -4270, -3710, 4760, -4207, 5880, 4592, -147, -5894, -6720, 6720, -9555, 6832, 10080, 168, -10731, -9590, 12600, -9408, 14280, 11760, 280, -12950, -17934
OFFSET
0,1
FORMULA
a(n) = -7 * b(n) where b(n) is multiplicative and b(7^e) = 1, ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1, 2, 4 (mod 7), (-(-p^2)^(e+1) + 1) / (p^2 + 1) if p == 3, 5, 6 (mod 7).
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(7/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is g.f. for A105634.
EXAMPLE
8 - 7*q - 35*q^2 + 56*q^3 - 147*q^4 + 168*q^5 + 280*q^6 - 7*q^7 - 595*q^8 + ...
PROG
(PARI) {a(n) = if( n<1, 8 * (n==0), -7 * sumdiv(n, d, d^2 * kronecker(-7, d)))}
(PARI) {a(n) = local(A, p, e); if( n<1, 8 * (n==0), A = factor(n); -7 * prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==7, 1, if(kronecker(p, 7)==1, ((p^2)^(e+1) - 1) / (p^2 - 1), (-(-p^2)^(e+1) + 1) / (p^2 + 1)))))) }
(PARI) {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); polcoeff( if(B = eta(x^7 + A), A = eta(x + A); 49 * x * (A * B)^3 + 8 * A^7 / B), n))}
CROSSREFS
Sequence in context: A267093 A090099 A365486 * A286460 A317231 A237646
KEYWORD
sign
AUTHOR
Michael Somos, Mar 31 2008
STATUS
approved