login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 8 * eta(q)^7 / eta(q^7) + 49 * (eta(q) * eta(q^7))^3 in powers of q.
2

%I #4 Oct 02 2017 02:29:04

%S 8,-7,-35,56,-147,168,280,-7,-595,-511,840,-854,1176,1176,-35,-1344,

%T -2387,2016,-2555,2520,3528,56,-4270,-3710,4760,-4207,5880,4592,-147,

%U -5894,-6720,6720,-9555,6832,10080,168,-10731,-9590,12600,-9408,14280,11760,280,-12950,-17934

%N Expansion of 8 * eta(q)^7 / eta(q^7) + 49 * (eta(q) * eta(q^7))^3 in powers of q.

%F a(n) = -7 * b(n) where b(n) is multiplicative and b(7^e) = 1, ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1, 2, 4 (mod 7), (-(-p^2)^(e+1) + 1) / (p^2 + 1) if p == 3, 5, 6 (mod 7).

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(7/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is g.f. for A105634.

%e 8 - 7*q - 35*q^2 + 56*q^3 - 147*q^4 + 168*q^5 + 280*q^6 - 7*q^7 - 595*q^8 + ...

%o (PARI) {a(n) = if( n<1, 8 * (n==0), -7 * sumdiv(n, d, d^2 * kronecker(-7, d)))}

%o (PARI) {a(n) = local(A, p, e); if( n<1, 8 * (n==0), A = factor(n); -7 * prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==7, 1, if(kronecker(p, 7)==1, ((p^2)^(e+1) - 1) / (p^2 - 1), (-(-p^2)^(e+1) + 1) / (p^2 + 1)))))) }

%o (PARI) {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); polcoeff( if(B = eta(x^7 + A), A = eta(x + A); 49 * x * (A * B)^3 + 8 * A^7 / B), n))}

%K sign

%O 0,1

%A _Michael Somos_, Mar 31 2008