login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105634
Expansion of Sum_{k>0} Kronecker(k,7)*x^k*(1 + x^k)/(1 - x^k)^3.
1
1, 5, 8, 21, 24, 40, 49, 85, 73, 120, 122, 168, 168, 245, 192, 341, 288, 365, 360, 504, 392, 610, 530, 680, 601, 840, 656, 1029, 842, 960, 960, 1365, 976, 1440, 1176, 1533, 1370, 1800, 1344, 2040, 1680, 1960, 1850, 2562, 1752, 2650, 2208, 2728, 2401, 3005
OFFSET
1,2
REFERENCES
A. Balog, H. Darmon and K. Ono, Congruence for Fourier coefficients of half-integral weight modular forms and special values of L-functions, pp. 105-128 of Analytic number theory, Vol. 1, Birkhäuser, Boston, 1996, see page 107.
Bruce Berndt, Commentary on Ramanujan's Papers, pp. 357-426 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea, 2000. See page 372 (4).
FORMULA
Multiplicative with a(p^e) = p^(2e) if p = 7; (p^(2e+2)-1)/(p^2-1) if p == 1, 2, 4 (mod 7); (p^(2e+2)+(-1)^e)/(p^2+1) if p == 3, 5, 6 (mod 7).
G.f.: Sum_{k>0} Kronecker(k, 7)*x^k*(1+x^k)/(1-x^k)^3.
a(n) = A002656(n) + 8*A053724(n-2).
a(7n) = 49a(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(-1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is g.f. for A138809.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 32*Pi^3/(343*sqrt(7)) = 1.093343069... (A327135). - Amiram Eldar, Nov 16 2023
EXAMPLE
q + 5*q^2 + 8*q^3 + 21*q^4 + 24*q^5 + 40*q^6 + 49*q^7 + 85*q^8 + 73*q^9 + ...
MATHEMATICA
f[p_, e_] := If[MemberQ[{1, 2, 4}, Mod[p, 7]], (p^(2*e+2)-1)/(p^2-1), (p^(2*e+2)+(-1)^e)/(p^2+1)]; f[7, e_] := 7^(2*e); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 04 2023 *)
PROG
(PARI) {a(n)=local(A, p, e); if(n<2, n==1, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==7, p^(2*e), if(kronecker(p, 7)==1, (p^(2*e+2)-1)/(p^2-1), (p^(2*e+2)+(-1)^e)/(p^2+1)))))) }
(PARI) {a(n)=local(A, B); if(n<1, 0, n--; A=x*O(x^n); polcoeff( if(B=eta(x^7+A), A=eta(x+A); (A*B)^3+8*x*B^7/A), n))}
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d^2 * kronecker(-7, n / d)))}
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, Apr 16 2005, Mar 31 2008
STATUS
approved