login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286462
Compound filter (3-adic valuation & the length of rightmost run of 1's in base-2): a(n) = P(A051064(n), A089309(n)), where P(n,k) is sequence A000027 used as a pairing function.
3
1, 1, 5, 1, 1, 5, 4, 1, 6, 1, 2, 5, 1, 4, 12, 1, 1, 6, 2, 1, 3, 2, 4, 5, 1, 1, 14, 4, 1, 12, 11, 1, 3, 1, 2, 6, 1, 2, 8, 1, 1, 3, 2, 2, 6, 4, 7, 5, 1, 1, 5, 1, 1, 14, 4, 4, 3, 1, 2, 12, 1, 11, 31, 1, 1, 3, 2, 1, 3, 2, 4, 6, 1, 1, 5, 2, 1, 8, 7, 1, 15, 1, 2, 3, 1, 2, 8, 2, 1, 6, 2, 4, 3, 7, 11, 5, 1, 1, 9, 1, 1, 5, 4, 1, 3, 1, 2, 14, 1, 4, 12, 4, 1, 3, 2, 1
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
a(n) = (1/2)*(2 + ((A051064(n)+A089309(n))^2) - A051064(n) - 3*A089309(n)).
PROG
(PARI)
A051064(n) = if(n<1, 0, 1+valuation(n, 3));
A089309(n) = valuation((n/2^valuation(n, 2))+1, 2); \\ After Ralf Stephan
A286462(n) = (1/2)*(2 + ((A051064(n)+A089309(n))^2) - A051064(n) - 3*A089309(n));
for(n=1, 10000, write("b286462.txt", n, " ", A286462(n)));
(Scheme) (define (A286462 n) (* (/ 1 2) (+ (expt (+ (A051064 n) (A089309 n)) 2) (- (A051064 n)) (- (* 3 (A089309 n))) 2)))
(Python)
from sympy import divisors, divisor_count, mobius
def a051064(n): return -sum([mobius(3*d)*divisor_count(n/d) for d in divisors(n)])
def v(n): return bin(n)[2:][::-1].index("1")
def a089309(n): return 0 if n==0 else v(n/2**v(n) + 1)
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a(n): return T(a051064(n), a089309(n)) # Indranil Ghosh, May 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 10 2017
STATUS
approved