

A089309


Write n in binary; a(n) = length of the rightmost run of 1's.


10



0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 1, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 1, 4, 5, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 2, 4, 1, 5, 6, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 1, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 1, 4, 5, 2, 1, 1, 2, 1, 1, 2, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Equivalent to: remove trailing zeros, add one, count trailing zeros.  Ralf Stephan, Aug 31 2013
a(n) is also the difference between the two largest distinct parts in the integer partition having viabin number n (we assume that 0 is a part). The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. Note that a(20) = 1 = the difference between the two largest distinct parts of the partition [2,2,2,1].  Emeric Deutsch, Aug 17 2017


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..16384
Index entries for sequences related to binary expansion of n


FORMULA

a(2n) = a(n), a(2n+1) = A007814(2n+2) = A001511(n+1).  Ralf Stephan, Jan 31 2004
a(0) = 0, a(2n) = a(n), a(4n+1) = 1, a(4n+3) = 1 + a(2n+1) (the Maple program makes use of these equations).  Emeric Deutsch, Aug 17 2017


EXAMPLE

13 = 1101 so a(13) = 1.


MAPLE

a := proc(n) if n = 0 then 0 elif `mod`(n, 2) = 0 then a((1/2)*n) elif `mod`(n, 4) = 1 then 1 else 1+a((1/2)*n1/2) end if end proc: seq(a(n), n = 0 .. 104); # Emeric Deutsch, Aug 17 2017


MATHEMATICA

Table[If[n == 0, 0, Length@ Last@ Select[Split@ IntegerDigits[n, 2], First@ # == 1 &]], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)


PROG

(PARI) a(n)=valuation(n/2^valuation(n, 2)+1, 2); \\ Ralf Stephan, Aug 31 2013


CROSSREFS

Cf. A089310, A089311, A089312, A089313.
Sequence in context: A090996 A237453 A265754 * A126387 A038374 A284569
Adjacent sequences: A089306 A089307 A089308 * A089310 A089311 A089312


KEYWORD

nonn,base


AUTHOR

N. J. A. Sloane, Dec 22 2003


EXTENSIONS

More terms from Vladeta Jovovic and John W. Layman, Jan 21 2004


STATUS

approved



