login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286260
Compound filter: a(n) = P(A001511(n), A161942(n)), where P(n,k) is sequence A000027 used as a pairing function.
7
1, 8, 1, 39, 4, 8, 1, 157, 79, 47, 4, 39, 22, 8, 4, 600, 37, 782, 11, 256, 1, 47, 4, 157, 466, 233, 11, 39, 106, 47, 1, 2284, 4, 380, 4, 4281, 172, 122, 22, 1132, 211, 8, 56, 256, 742, 47, 4, 600, 1597, 4373, 37, 1278, 352, 122, 37, 157, 11, 1037, 106, 256, 466, 8, 79, 8785, 211, 47, 137, 2083, 4, 47, 37, 19507, 667, 1655, 466, 669, 4, 233, 11, 4661, 7261
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A001511(n)+A161942(n))^2) - A001511(n) - 3*A161942(n)).
PROG
(PARI)
A001511(n) = (1+valuation(n, 2));
A000265(n) = (n >> valuation(n, 2));
A161942(n) = A000265(sigma(n));
A286260(n) = (2 + ((A001511(n)+A161942(n))^2) - A001511(n) - 3*A161942(n))/2;
for(n=1, 16384, write("b286260.txt", n, " ", A286260(n)));
(Scheme) (define (A286260 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A161942 n)) 2) (- (A001511 n)) (- (* 3 (A161942 n))) 2)))
(Python)
from sympy import factorint, divisors, divisor_sigma
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a000265(n): return max(list(filter(lambda i: i%2 == 1, divisors(n))))
def a161942(n): return a000265(divisor_sigma(n))
def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1")
def a(n): return T(a001511(n), a161942(n)) # Indranil Ghosh, May 07 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 07 2017
STATUS
approved