login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286258
Compound filter: a(n) = P(A046523(n), A046523(2n+1)), where P(n,k) is sequence A000027 used as a pairing function.
6
2, 5, 5, 25, 5, 27, 23, 44, 14, 61, 5, 117, 38, 27, 27, 226, 23, 90, 23, 90, 27, 142, 5, 375, 40, 27, 86, 148, 5, 495, 80, 698, 27, 61, 27, 702, 80, 61, 27, 765, 5, 625, 23, 90, 148, 61, 23, 1224, 109, 90, 27, 832, 5, 324, 61, 324, 61, 142, 23, 2013, 23, 84, 90, 2410, 27, 625, 302, 90, 27, 625, 23, 2998, 80, 27, 90, 265, 61, 495, 23, 1426, 152, 601, 5, 2013, 142, 27, 142
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
a(n) = (1/2)*(2 + ((A046523(n)+A046523((2*n)+1))^2) - A046523(n) - 3*A046523((2*n)+1)).
PROG
(PARI)
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A286258(n) = (1/2)*(2 + ((A046523(n)+A046523((2*n)+1))^2) - A046523(n) - 3*A046523((2*n)+1));
for(n=1, 10000, write("b286258.txt", n, " ", A286258(n)));
(Scheme) (define (A286258 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A046523 (+ 1 n n))) 2) (- (A046523 n)) (- (* 3 (A046523 (+ 1 n n)))) 2)))
(Python)
from sympy import factorint
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a(n): return T(a046523(n), a046523(2*n + 1)) # Indranil Ghosh, May 07 2017
CROSSREFS
Cf. A005384 (gives the positions of 5's), A234095 (of 23's).
Sequence in context: A338586 A143818 A238879 * A297446 A154918 A176862
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 07 2017
STATUS
approved