login
A286255
Compound filter: a(n) = P(A046523(n), A046523(1+n)), where P(n,k) is sequence A000027 used as a pairing function.
7
2, 5, 12, 14, 23, 27, 38, 63, 40, 27, 80, 90, 23, 61, 216, 152, 80, 90, 80, 148, 61, 27, 302, 375, 40, 84, 179, 90, 467, 495, 530, 698, 61, 61, 826, 702, 23, 61, 412, 324, 467, 495, 80, 265, 148, 27, 1178, 1323, 109, 148, 142, 90, 302, 430, 412, 430, 61, 27, 1832, 1890, 23, 142, 2787, 2410, 601, 495, 80, 148, 601, 495, 2630, 2700, 23, 142, 265, 148, 601, 495, 1178
OFFSET
1,1
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A046523(n)+A046523(1+n))^2) - A046523(n) - 3*A046523(1+n)).
PROG
(PARI)
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A286255(n) = (2 + ((A046523(n)+A046523(1+n))^2) - A046523(n) - 3*A046523(1+n))/2;
for(n=1, 10000, write("b286255.txt", n, " ", A286255(n)));
(Scheme) (define (A286255 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A046523 (+ 1 n))) 2) (- (A046523 n)) (- (* 3 (A046523 (+ 1 n)))) 2)))
(Python)
from sympy import factorint
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a(n): return T(a046523(n), a046523(n + 1)) # Indranil Ghosh, May 07 2017
CROSSREFS
Cf. A005383 (after its initial term 3, gives the positions of 23's in this sequence).
Cf. A051950 (one of the matches not matched by A046523 alone).
Sequence in context: A039586 A352785 A114217 * A286160 A286163 A286240
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 07 2017
STATUS
approved