login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176862
A symmetrical triangle sequence:t(n,m)=(-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1]
0
2, 5, 5, 37, -16, 37, 239, -50, -50, 239, 1801, -492, 180, -492, 1801, 15119, -4186, 714, 714, -4186, 15119, 141121, -40336, 8568, -2688, 8568, -40336, 141121, 1451519, -423342, 90504, -13104, -13104, 90504, -423342, 1451519
OFFSET
3,1
COMMENTS
Row sums are:
{2, 10, 58, 378, 2798, 23294, 216018, 2211154,...}.
REFERENCES
F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 270.
FORMULA
t(n,m)=(-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1]
EXAMPLE
{2},
{5, 5},
{37, -16, 37},
{239, -50, -50, 239},
{1801, -492, 180, -492, 1801},
{15119, -4186, 714, 714, -4186, 15119},
{141121, -40336, 8568, -2688, 8568, -40336, 141121},
{1451519, -423342, 90504, -13104, -13104, 90504, -423342, 1451519}
MATHEMATICA
t[n_, m_] := (-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1];
Table[Table[t[n, m], {m, 2, n - 1}], {n, 3, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A286258 A297446 A154918 * A352392 A176081 A271222
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Apr 27 2010
STATUS
approved