login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132159 Lower triangular matrix T(n,j) for double application of an iterated mixed order Laguerre transform inverse to A132014. Coefficients of Laguerre polynomials (-1)^n * n! * L(n,-2-n,x). 14
1, 2, 1, 6, 4, 1, 24, 18, 6, 1, 120, 96, 36, 8, 1, 720, 600, 240, 60, 10, 1, 5040, 4320, 1800, 480, 90, 12, 1, 40320, 35280, 15120, 4200, 840, 126, 14, 1, 362880, 322560, 141120, 40320, 8400, 1344, 168, 16, 1, 3628800, 3265920, 1451520, 423360, 90720, 15120 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The matrix operation b = T*a can be characterized several ways in terms of the coefficients a(n) and b(n), their o.g.f.'s A(x) and B(x), or their e.g.f.'s EA(x) and EB(x).

1) b(n) = n! Lag[n,(.)!*Lag[.,a1(.),-1],0], umbrally,

where a1(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0]

2) b(n) = (-1)^n * n! * Lag(n,a(.),-2-n)

3) b(n) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(-2,j) * j! * a(n-j)

4) b(n) = Sum_{j=0..n} binomial(n,j) * (j+1)! * a(n-j)

5) B(x) = (1-xDx))^(-2) A(x), formally

6) B(x) = Sum_{j>=0} (-1)^j * binomial(-2,j) * (xDx)^j A(x)

= Sum_{j>=0} (j+1) * (xDx)^j A(x)

7) B(x) = Sum_{j>=0} (j+1) * x^j * D^j * x^j A(x)

8) B(x) = Sum_{j>=0} (j+1)! * x^j * Lag(j,-:xD:,0) A(x)

9) EB(x) = Sum_{j>=0} x^j * Lag[j,(.)! * Lag[.,a1(.),-1],0]

10) EB(x) = Sum_{j>=0} Lag[j,a1(.),-1] * (-x)^j / (1-x)^(j+1)

11) EB(x) = Sum_{j>=0} x^n * Sum_{j=0..n} (j+1)!/j! * a(n-j) / (n-j)!

12) EB(x) = Sum_{j>=0} (-x)^j * Lag[j,a(.),-2-j]

13) EB(x) = exp(a(.)*x) / (1-x)^2 = (1-x)^(-2) * EA(x)

14) T = A094587^2 = A132013^(-2) = A132014^(-1)

where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the D operator series at the j = n term gives an o.g.f. for b(0) through b(n).

c = (1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and associated operations described in A133314. Thus T(n,k) = binomial(n,k)*c(n-k) . c are also the coefficients in formulas 4 and 8.

The reciprocal sequence to c is d = (1,-2,2,0,0,0,...), so the inverse of T is TI(n,k) = binomial(n,k)*d(n-k) = A132014. (A121757 is the reverse of T.)

These formulas are easily generalized for m applications of the basic operator n! Lag[n,(.)!*Lag[.,a(.),-1],0] by replacing 2 by m in formulas 2, 3, 5, 6, 12, 13 and 14, or (j+1)! by (m-1+j)!/(m-1)! in 4, 8 and 11. For further discussion of repeated applications of T, see A132014.

The row sums of T = [formula 4 with a(n) all 1] = [binomial transform of c] = [coefficients of B(x) with A(x) = 1/(1-x)] = A001339. Therefore the e.g.f. of A001339 = [formula 13 with a(n) all 1] = exp(x)*(1-x)^(-2) = exp(x)*exp[c(.)*x)] = exp[(1+c(.))*x].

Note the reciprocal is 1/{exp[(1+c(.))*x]} = exp(-x)*(1-x)^2 = e.g.f. of signed A002061 with leading 1 removed], which makes A001339 and the signed, shifted A002061 reciprocal arrays under the list partition transform of A133314.

The e.g.f. for the row polynomials (see A132382) implies they form an Appell sequence (see Wikipedia). - Tom Copeland, Dec 03 2013

As noted in item 12 above and reiterated in the Bala formula below, the e.g.f. is e^(x*t)/(1-x)^2, and the Poisson-Charlier polynomials P_n(t,y) have the e.g.f. (1+x)^y e^(-xt) (Feinsilver, p. 5), so the row polynomials R_n(t) of this entry are (-1)^n P_n(t,-2). The associated Appell sequence IR_n(t) that is the umbral compositional inverse of this entry's polynomials has the e.g.f. (1-x)^2 e^(xt), i.e., the e.g.f. of A132014 (noted above), and, therefore, the row polynomials (-1)^n PC(t,2). As umbral compositional inverses, R_n(IR.(t)) = t^n =  IR_n(R.(t)), where, by definition, P.(t)^n = P_n(t), is the umbral evaluation. - Tom Copeland, Jan 15 2016

T(n,k) is the number of ways to place (n-k) rooks in a 2 x (n-1) Ferrers board (or diagram) under the Goldman-Haglund i-row creation rook mode for i=2. Triangular recurrence relation is given by T(n,k) = T(n-1,k-1) + (n+1-k)*T(n-1,k). - Ken Joffaniel M. Gonzales, Jan 21 2016

LINKS

Nathaniel Johnston, Rows 0..100, flattened

Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018.

P. Feinsilver, Lie algebras, representations, and analytic semigroups through dual vector fields

Jay Goldman and James Haglund, Generalized rook polynomials, J. Combin. Theory A 91 (2000), 509-530.

M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.

Wikipedia, Appell sequence

Wikipedia, Sheffer sequence

FORMULA

T(n,k) = binomial(n,k)*c(n-k).

From Peter Bala, Jul 10 2008: (Start)

T(n,k) = binomial(n,k)*(n-k+1)!.

T(n,k) = (n-k+1)*T(n-1,k) + T(n-1,k-1).

E.g.f.: exp(x*y)/(1-y)^2 = 1 + (2+x)*y + (6+4*x+x^2)*y^2/2! + ... .

This array is the particular case P(2,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:

  n\k|0....................1...............2.........3.....4

  ----------------------------------------------------------

  0..|1.....................................................

  1..|a....................1................................

  2..|a(a+b)...............2a..............1................

  3..|a(a+b)(a+2b).........3a(a+b).........3a........1......

  4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1

  ...

See A094587 for some general properties of these arrays.

Other cases recorded in the database include: P(1,0) = Pascal's triangle A007318, P(1,1) = A094587, P(2,0) = A038207, P(3,0) = A027465, P(1,3) = A136215 and P(2,3) = A136216. (End)

Let f(x) = (1/x^2)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+2)*R(n,x)-x*R'(n,x). Cf. A094587. - Peter Bala, Oct 28 2011

Exponential Riordan array [1/(1 - y)^2, y]. The row polynomials R(n,x) thus form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x). Define a polynomial sequence P(n,x) of binomial type by setting P(n,x) = Product_{k = 0..n-1} (2*x + k) with the convention that P(0,x) = 1. Then the present triangle is the triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (24, 18, 6, 1) so P(3,x + 1) = (2*x + 2)*(2*x + 3)*(2*x + 4) = 24 + 18*(2*x) + 6*(2*x)*(2*x + 1) + (2*x)*(2*x + 1)*(2*x + 2). Matrix square of triangle A094587. - Peter Bala, Aug 29 2013

From Tom Copeland, Apr 21 2014: (Start)

T = (I-A132440)^(-2) = {2*I - exp[(A238385-I)]}^(-2) = unsigned exp[2*(I-A238385)] = exp[A005649(.)*(A238385-I)], umbrally, where I = identity matrix.

The e.g.f. is exp(x*y)*(1-y)^(-2), so the row polynomials form an Appell sequence with lowering operator D=d/dx and raising operator x+2/(1-D).

With L(n,m,x) = Laguerre polynomials of order m, the row polynomials are (-1)^n * n! * L(n,-2-n,x) = (-1)^n*(-2!/(-2-n)!)*K(-n,-2-n+1,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).

Operationally, (-1)^n*n!*L(n,-2-n,-:xD:) = (-1)^n*x^(n+2)*:Dx:^n*x^(-2-n) = (-1)^n*x^2*:xD:^n*x^(-2) = (-1)^n*n!*binomial(xD-2,n) = (-1)^n*n!*binomial(-2,n)*K(-n,-2-n+1,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706.

The generalized Pascal triangle Bala mentions is a special case of the fundamental generalized factorial matrices in A133314. (End)

From Peter Bala, Jul 26 2021: (Start)

O.g.f: 1/y * Sum_{k >= 0} k!*( y/(1 - x*y) )^k =  1 + (2 + x)*y + (6 + 4*x + x^2)*y^2 + ....

First-order recurrence for the row polynomials: (n - x)*R(n,x) = n*(n - x + 1)*R(n-1,x) - x^(n+1) with R(0,x) = 1.

R(n,x) = (x + n + 1)*R(n-1,x) - (n - 1)*x*R(n-2,x) with R(0,x) = 1 and R(1,x) = 2 + x.

R(n,x) = A087981 (x = -2), A000255 (x = -1), A000142 (x = 0), A001339 (x = 1), A081923 (x = 2) and A081924 (x = 3). (End)

EXAMPLE

First few rows of the triangle are

    1;

    2,  1;

    6,  4,  1;

   24, 18,  6, 1;

  120, 96, 36, 8, 1;

MAPLE

T := proc(n, k) return binomial(n, k)*factorial(n-k+1): end: seq(seq(T(n, k), k=0..n), n=0..10); # Nathaniel Johnston, Sep 28 2011

MATHEMATICA

nn=10; f[list_]:=Select[list, #>0&]; Map[f, Range[0, nn]!CoefficientList[Series[Exp[y x]/(1-x)^2, {x, 0, nn}], {x, y}]]//Grid  (* Geoffrey Critzer, Feb 15 2013 *)

PROG

(Haskell)

a132159 n k = a132159_tabl !! n !! k

a132159_row n = a132159_tabl !! n

a132159_tabl = map reverse a121757_tabl

-- Reinhard Zumkeller, Mar 06 2014

(MAGMA) /* As triangle */ [[Binomial(n, k)*Factorial(n-k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 10 2016

(Sage) flatten([[binomial(n, k)*factorial(n-k+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, May 19 2021

CROSSREFS

Cf. A008277, A094587, A132013, A132382.

Columns: A000142 (k=0), A001563 (k=1), A001286 (k=2), A005990 (k=3), A061206 (k=4), A062199 (k=5), A062148 (k=6).

Sequence in context: A080247 A078937 A167560 * A112356 A135885 A162312

Adjacent sequences:  A132156 A132157 A132158 * A132160 A132161 A132162

KEYWORD

easy,nonn,tabl

AUTHOR

Tom Copeland, Nov 01 2007

EXTENSIONS

Formula 3) in comments corrected by Tom Copeland, Apr 20 2014

Title modified by Tom Copeland, Apr 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 07:52 EST 2021. Contains 349401 sequences. (Running on oeis4.)