Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #104 Sep 08 2022 08:45:31
%S 1,2,1,6,4,1,24,18,6,1,120,96,36,8,1,720,600,240,60,10,1,5040,4320,
%T 1800,480,90,12,1,40320,35280,15120,4200,840,126,14,1,362880,322560,
%U 141120,40320,8400,1344,168,16,1,3628800,3265920,1451520,423360,90720,15120
%N Lower triangular matrix T(n,j) for double application of an iterated mixed order Laguerre transform inverse to A132014. Coefficients of Laguerre polynomials (-1)^n * n! * L(n,-2-n,x).
%C The matrix operation b = T*a can be characterized several ways in terms of the coefficients a(n) and b(n), their o.g.f.'s A(x) and B(x), or their e.g.f.'s EA(x) and EB(x).
%C 1) b(n) = n! Lag[n,(.)!*Lag[.,a1(.),-1],0], umbrally,
%C where a1(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0]
%C 2) b(n) = (-1)^n * n! * Lag(n,a(.),-2-n)
%C 3) b(n) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(-2,j) * j! * a(n-j)
%C 4) b(n) = Sum_{j=0..n} binomial(n,j) * (j+1)! * a(n-j)
%C 5) B(x) = (1-xDx))^(-2) A(x), formally
%C 6) B(x) = Sum_{j>=0} (-1)^j * binomial(-2,j) * (xDx)^j A(x)
%C = Sum_{j>=0} (j+1) * (xDx)^j A(x)
%C 7) B(x) = Sum_{j>=0} (j+1) * x^j * D^j * x^j A(x)
%C 8) B(x) = Sum_{j>=0} (j+1)! * x^j * Lag(j,-:xD:,0) A(x)
%C 9) EB(x) = Sum_{j>=0} x^j * Lag[j,(.)! * Lag[.,a1(.),-1],0]
%C 10) EB(x) = Sum_{j>=0} Lag[j,a1(.),-1] * (-x)^j / (1-x)^(j+1)
%C 11) EB(x) = Sum_{j>=0} x^n * Sum_{j=0..n} (j+1)!/j! * a(n-j) / (n-j)!
%C 12) EB(x) = Sum_{j>=0} (-x)^j * Lag[j,a(.),-2-j]
%C 13) EB(x) = exp(a(.)*x) / (1-x)^2 = (1-x)^(-2) * EA(x)
%C 14) T = A094587^2 = A132013^(-2) = A132014^(-1)
%C where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the D operator series at the j = n term gives an o.g.f. for b(0) through b(n).
%C c = (1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and associated operations described in A133314. Thus T(n,k) = binomial(n,k)*c(n-k) . c are also the coefficients in formulas 4 and 8.
%C The reciprocal sequence to c is d = (1,-2,2,0,0,0,...), so the inverse of T is TI(n,k) = binomial(n,k)*d(n-k) = A132014. (A121757 is the reverse of T.)
%C These formulas are easily generalized for m applications of the basic operator n! Lag[n,(.)!*Lag[.,a(.),-1],0] by replacing 2 by m in formulas 2, 3, 5, 6, 12, 13 and 14, or (j+1)! by (m-1+j)!/(m-1)! in 4, 8 and 11. For further discussion of repeated applications of T, see A132014.
%C The row sums of T = [formula 4 with a(n) all 1] = [binomial transform of c] = [coefficients of B(x) with A(x) = 1/(1-x)] = A001339. Therefore the e.g.f. of A001339 = [formula 13 with a(n) all 1] = exp(x)*(1-x)^(-2) = exp(x)*exp[c(.)*x)] = exp[(1+c(.))*x].
%C Note the reciprocal is 1/{exp[(1+c(.))*x]} = exp(-x)*(1-x)^2 = e.g.f. of signed A002061 with leading 1 removed], which makes A001339 and the signed, shifted A002061 reciprocal arrays under the list partition transform of A133314.
%C The e.g.f. for the row polynomials (see A132382) implies they form an Appell sequence (see Wikipedia). - _Tom Copeland_, Dec 03 2013
%C As noted in item 12 above and reiterated in the Bala formula below, the e.g.f. is e^(x*t)/(1-x)^2, and the Poisson-Charlier polynomials P_n(t,y) have the e.g.f. (1+x)^y e^(-xt) (Feinsilver, p. 5), so the row polynomials R_n(t) of this entry are (-1)^n P_n(t,-2). The associated Appell sequence IR_n(t) that is the umbral compositional inverse of this entry's polynomials has the e.g.f. (1-x)^2 e^(xt), i.e., the e.g.f. of A132014 (noted above), and, therefore, the row polynomials (-1)^n PC(t,2). As umbral compositional inverses, R_n(IR.(t)) = t^n = IR_n(R.(t)), where, by definition, P.(t)^n = P_n(t), is the umbral evaluation. - _Tom Copeland_, Jan 15 2016
%C T(n,k) is the number of ways to place (n-k) rooks in a 2 x (n-1) Ferrers board (or diagram) under the Goldman-Haglund i-row creation rook mode for i=2. Triangular recurrence relation is given by T(n,k) = T(n-1,k-1) + (n+1-k)*T(n-1,k). - _Ken Joffaniel M. Gonzales_, Jan 21 2016
%H Nathaniel Johnston, <a href="/A132159/b132159.txt">Rows 0..100, flattened</a>
%H Paul Barry, <a href="https://arxiv.org/abs/1804.06801">A note on number triangles that are almost their own production matrix</a>, arXiv:1804.06801 [math.CO], 2018.
%H P. Feinsilver, <a href="http://chanoir.math.siu.edu/MATH/Merida/PDF/Merida.pdf">Lie algebras, representations, and analytic semigroups through dual vector fields</a>
%H Jay Goldman and James Haglund, <a href="http://dx.doi.org/10.1006/jcta.2000.3113">Generalized rook polynomials</a>, J. Combin. Theory A 91 (2000), 509-530.
%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Appell_sequence">Appell sequence</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Sheffer_sequence">Sheffer sequence</a>
%F T(n,k) = binomial(n,k)*c(n-k).
%F From _Peter Bala_, Jul 10 2008: (Start)
%F T(n,k) = binomial(n,k)*(n-k+1)!.
%F T(n,k) = (n-k+1)*T(n-1,k) + T(n-1,k-1).
%F E.g.f.: exp(x*y)/(1-y)^2 = 1 + (2+x)*y + (6+4*x+x^2)*y^2/2! + ... .
%F This array is the particular case P(2,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
%F n\k|0....................1...............2.........3.....4
%F ----------------------------------------------------------
%F 0..|1.....................................................
%F 1..|a....................1................................
%F 2..|a(a+b)...............2a..............1................
%F 3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
%F 4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
%F ...
%F See A094587 for some general properties of these arrays.
%F Other cases recorded in the database include: P(1,0) = Pascal's triangle A007318, P(1,1) = A094587, P(2,0) = A038207, P(3,0) = A027465, P(1,3) = A136215 and P(2,3) = A136216. (End)
%F Let f(x) = (1/x^2)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+2)*R(n,x)-x*R'(n,x). Cf. A094587. - _Peter Bala_, Oct 28 2011
%F Exponential Riordan array [1/(1 - y)^2, y]. The row polynomials R(n,x) thus form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x). Define a polynomial sequence P(n,x) of binomial type by setting P(n,x) = Product_{k = 0..n-1} (2*x + k) with the convention that P(0,x) = 1. Then the present triangle is the triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (24, 18, 6, 1) so P(3,x + 1) = (2*x + 2)*(2*x + 3)*(2*x + 4) = 24 + 18*(2*x) + 6*(2*x)*(2*x + 1) + (2*x)*(2*x + 1)*(2*x + 2). Matrix square of triangle A094587. - _Peter Bala_, Aug 29 2013
%F From _Tom Copeland_, Apr 21 2014: (Start)
%F T = (I-A132440)^(-2) = {2*I - exp[(A238385-I)]}^(-2) = unsigned exp[2*(I-A238385)] = exp[A005649(.)*(A238385-I)], umbrally, where I = identity matrix.
%F The e.g.f. is exp(x*y)*(1-y)^(-2), so the row polynomials form an Appell sequence with lowering operator D=d/dx and raising operator x+2/(1-D).
%F With L(n,m,x) = Laguerre polynomials of order m, the row polynomials are (-1)^n * n! * L(n,-2-n,x) = (-1)^n*(-2!/(-2-n)!)*K(-n,-2-n+1,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
%F Operationally, (-1)^n*n!*L(n,-2-n,-:xD:) = (-1)^n*x^(n+2)*:Dx:^n*x^(-2-n) = (-1)^n*x^2*:xD:^n*x^(-2) = (-1)^n*n!*binomial(xD-2,n) = (-1)^n*n!*binomial(-2,n)*K(-n,-2-n+1,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706.
%F The generalized Pascal triangle Bala mentions is a special case of the fundamental generalized factorial matrices in A133314. (End)
%F From _Peter Bala_, Jul 26 2021: (Start)
%F O.g.f: 1/y * Sum_{k >= 0} k!*( y/(1 - x*y) )^k = 1 + (2 + x)*y + (6 + 4*x + x^2)*y^2 + ....
%F First-order recurrence for the row polynomials: (n - x)*R(n,x) = n*(n - x + 1)*R(n-1,x) - x^(n+1) with R(0,x) = 1.
%F R(n,x) = (x + n + 1)*R(n-1,x) - (n - 1)*x*R(n-2,x) with R(0,x) = 1 and R(1,x) = 2 + x.
%F R(n,x) = A087981 (x = -2), A000255 (x = -1), A000142 (x = 0), A001339 (x = 1), A081923 (x = 2) and A081924 (x = 3). (End)
%e First few rows of the triangle are
%e 1;
%e 2, 1;
%e 6, 4, 1;
%e 24, 18, 6, 1;
%e 120, 96, 36, 8, 1;
%p T := proc(n,k) return binomial(n,k)*factorial(n-k+1): end: seq(seq(T(n,k),k=0..n),n=0..10); # _Nathaniel Johnston_, Sep 28 2011
%t nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x]/(1-x)^2,{x,0,nn}],{x,y}]]//Grid (* _Geoffrey Critzer_, Feb 15 2013 *)
%o (Haskell)
%o a132159 n k = a132159_tabl !! n !! k
%o a132159_row n = a132159_tabl !! n
%o a132159_tabl = map reverse a121757_tabl
%o -- _Reinhard Zumkeller_, Mar 06 2014
%o (Magma) /* As triangle */ [[Binomial(n,k)*Factorial(n-k+1): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Feb 10 2016
%o (Sage) flatten([[binomial(n,k)*factorial(n-k+1) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, May 19 2021
%Y Cf. A008277, A094587, A132013, A132382.
%Y Columns: A000142 (k=0), A001563 (k=1), A001286 (k=2), A005990 (k=3), A061206 (k=4), A062199 (k=5), A062148 (k=6).
%K easy,nonn,tabl
%O 0,2
%A _Tom Copeland_, Nov 01 2007
%E Formula 3) in comments corrected by _Tom Copeland_, Apr 20 2014
%E Title modified by _Tom Copeland_, Apr 23 2014