The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132014 T(n,j) for double application of an iterated mixed order Laguerre transform: Coefficients of Laguerre polynomial (-1)^n*n!*L(n,2-n,x). 9
 1, -2, 1, 2, -4, 1, 0, 6, -6, 1, 0, 0, 12, -8, 1, 0, 0, 0, 20, -10, 1, 0, 0, 0, 0, 30, -12, 1, 0, 0, 0, 0, 0, 42, -14, 1, 0, 0, 0, 0, 0, 0, 56, -16, 1, 0, 0, 0, 0, 0, 0, 0, 72, -18, 1, 0, 0, 0, 0, 0, 0, 0, 0, 90, -20, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110, -22, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 132, -24, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x). 1) b(0) = a(0), b(1) = a(n) - 2 a(0), b(n) = a(n) - 2n a(n-1) + n(n-1) a(n-2) for n > 0. 2) b(n) = n! Lag{n,(.)!*Lag[.,a1(.),0],-1}, umbrally, where a1(n) = n! Lag{n,(.)!*Lag[.,a(.),0],-1}. 3) b(n) = n! Sum_{j=0..min(2,n)} (-1)^j * binomial(n,j)*a(n-j)/(n-j)! 4) b(n) = (-1)^n n! Lag(n,a(.),2-n) 5) B(x) = (1-xDx)^2 A(x) 6) B(x) = Sum_{j=0..2} {(-1)^j * binomial(2,j)*j!*x^j*Lag(j,-:xD:,0)} A(x) where D is the derivative w.r.t. x, (:xD:)^j = x^j*D^j and Lag(n,x,m) is the associated Laguerre polynomial of order m. 7) EB(x) = (1-x)^2 EA(x) 8) T = S^2 = A132013^2 = A094587^(-2) = A132159^(-1). c = (1,-2,2,0,0,...) is the sequence associated to T under the list partition transform and associated operations described in A133314. c are also the coefficients in formula 6. Thus T(n,k) = binomial(n,k)*c(n-k). The reciprocal sequence to c is d = (1!,2!,3!,4!,...), so the inverse of T is TI(n,k) = binomial(n,k)*d(n-k) = A132159. These formulas are easily generalized for m applications of the basic operator n! Lag[n,(.)!*Lag[.,a(.),0],-1] by replacing 2 with m in formulas 3, 4, 5, 6 and 7. The generalized c are given by the generalized coefficients of 6, i.e., c(n) = (-1)^n * binomial(m,n)*n! = (-1)^n * m!/(m-n)!. The generalized d are given by the array at and below the term SI(m-1,m-1) in SI(n,k) = binomial(n,k) * (n-k)!, the inverse of S; i.e., d(n) = SI(m-1+n,m-1) = binomial(m-1+n,m-1) * n! = (m-1+n)!/(m-1)!. As an aside, this shows that the signed falling factorials and the rising factorials form reciprocal pairs under the list partition transform of A133314. Row sums of T = [formula 3 with all a(n) = 1] = [binomial transform of c] = [coefficients of B(x) with A(x) = 1/(1-x)] = (1,-1,-1,1,5,11,19,...), with e.g.f. = [EB(x) with EA(x) = exp(x)] = (1-x)^2 * exp(x) = exp(x)*exp(c(.)*x) = exp[(1+c(.))*x]. Alternating row sums of T = [formula 3 with all a(n) = (-1)^n] = [finite differences of c] = [coefficients of B(x) with A(x) = 1/(1+x)] = (1,-3,7,-13,21,-31,...) = (-1)^n A002061(n+1), with e.g.f. = [EB(x) with EA(x) = exp(-x)] = (1-x)^2 * exp(-x) = exp(- x)*exp(c(.)*x) = exp[-(1-c(.))*x]. See A132159 for a relation to the Poisson-Charlier polynomials. - Tom Copeland, Jan 15 2016 LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3 Wikipedia, Appell sequence FORMULA T(n,k) = binomial(n,k)*c(n-k). E.g.f. for row polynomials: exp(x*y)(1-x)^2. Implies the row polynomials form an Appell sequence (see Wikipedia). - Tom Copeland, Dec 03 2013 From Tom Copeland, Apr 21 2014: (Start) Change notation letting L(n,m,x) = Lag(n,x,m). Row polynomials: (-1)^n*n!*L(n,2-n,x) = (-1)^n*(-x)^(n-2)*2!*L(2,n-2,x) = (-1)^n*(2!/(2-n)!)*K(-n,2-n+1,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero). For the row polynomials, the lowering operator = d/dx and the raising operator = x - 2/(1-D). T = (I - A132440)^2 = [2*I - exp(A238385-I)]^2 = signed exp[2*(A238385-I)], where I = identity matrix. Operationally, (-1)^n*n!*L(n,2-n,-:xD:) = (-1)^n*x^(n-2)*:Dx:^n*x^(2-n) = (-1)^n*x^(-2)*:xD:^n*x^2 = (-1)^n*n!*binomial(xD+2,n) = (-1)^n*n!*binomial(2,n)*K(-n,2-n+1,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706. (End) EXAMPLE First few rows of the triangle are    1;   -2,   1;    2,  -4,   1;    0,   6,  -6,   1;    0,   0,  12,  -8,   1;    0,   0,   0,  20, -10,   1; MATHEMATICA m = 12; s = Exp[x*y]*(1 - x)^2 + O[x]^(m + 2) + O[y]^(m + 2); T[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]*n!; T[0, 0] = 1; Table[T[n, k], {n, 0, m}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2015 *) PROG (PARI) row(n) = Vecrev((-1)^n*n!*pollaguerre(n, 2-n)); \\ Michel Marcus, Feb 06 2021 CROSSREFS Cf. A132382, A110330, A132159, A094587, A132013. Sequence in context: A304785 A143446 A110330 * A097864 A097866 A097865 Adjacent sequences:  A132011 A132012 A132013 * A132015 A132016 A132017 KEYWORD easy,sign,tabl AUTHOR Tom Copeland, Oct 30 2007, Nov 05 2007, Nov 11 2007 EXTENSIONS Title modified by Tom Copeland, Apr 21 2014 Missing term -18 inserted in 10th row by Jean-François Alcover, Jul 09 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 06:18 EDT 2021. Contains 343636 sequences. (Running on oeis4.)