OFFSET
1,4
COMMENTS
From Edward Early, Jan 10 2009: (Start)
Also the dimension of the n-th degree part of the mod 3 Steenrod algebra.
Also the number of partitions into parts (3^j-1)/2=1+3+3^2+...+3^(j-1) for j>=1. (End)
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
FORMULA
More generally, number of partitions of n into distinct parts such that m*u<=v for all pairs (u,v) of parts with u<v is equal to the number of partitions of n into parts of the form (m^k-1)/(m-1), thus g.f. for the number of such partitions is 1/Product_{k>0} (1-x^((m^k-1)/(m-1))). - Vladeta Jovovic, Jan 09 2009
EXAMPLE
a(10) = #{10, 9+1, 8+2} = 3;
a(11) = #{11, 10+1, 9+2} = 3;
a(12) = #{12, 11+1, 10+2, 9+3} = 4;
a(13) = #{13, 12+1, 11+2, 10+3, 9+3+1} = 5.
From Joerg Arndt, Dec 28 2012: (Start)
The a(33)=17 such partitions of 33 are
[ 1] [ 24 7 2 ]
[ 2] [ 24 8 1 ]
[ 3] [ 25 6 2 ]
[ 4] [ 25 7 1 ]
[ 5] [ 25 8 ]
[ 6] [ 26 6 1 ]
[ 7] [ 26 7 ]
[ 8] [ 27 5 1 ]
[ 9] [ 27 6 ]
[10] [ 28 4 1 ]
[11] [ 28 5 ]
[12] [ 29 3 1 ]
[13] [ 29 4 ]
[14] [ 30 3 ]
[15] [ 31 2 ]
[16] [ 32 1 ]
[17] [ 33 ]
(End)
PROG
(Haskell)
a132011 = p [1..] where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p [3 * k ..] (m - k) + p ks m
-- Reinhard Zumkeller, Oct 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 07 2007
STATUS
approved