The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304785 Expansion of Product_{k>=1} (1 - p(k)*x^k), where p(k) = number of partitions of k (A000041). 2
 1, -1, -2, -1, -2, 4, 0, 15, 7, 17, 22, 26, -79, -2, -12, -392, -250, -392, -443, -640, -404, -795, 5106, 1147, 3304, 4542, 32330, 21001, 23372, 21015, 14496, 16165, -17213, 51296, -231330, -890169, -492310, -755449, -1648273, 131600, -6308274, -2160440, -4410945, 1593319 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Convolution inverse of A063834. LINKS Eric Weisstein's World of Mathematics, Partition Function P FORMULA G.f.: Product_{k>=1} (1 - A000041(k)*x^k). MATHEMATICA nmax = 43; CoefficientList[Series[Product[(1 - PartitionsP[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[-Sum[d PartitionsP[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 43}] CROSSREFS Cf. A000041, A063834, A271619, A300508. Sequence in context: A137408 A007461 A181302 * A143446 A110330 A132014 Adjacent sequences:  A304782 A304783 A304784 * A304786 A304787 A304788 KEYWORD sign AUTHOR Ilya Gutkovskiy, May 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 13:08 EDT 2021. Contains 343650 sequences. (Running on oeis4.)