login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304784
Expansion of Product_{k>=1} 1/(1 + x^k)^p(k), where p(k) = number of partitions of k (A000041).
1
1, -1, -1, -2, 0, -1, 2, 3, 11, 8, 19, 13, 22, -5, -10, -80, -105, -246, -303, -502, -506, -681, -400, -231, 873, 1956, 4733, 7536, 12891, 17609, 25188, 29508, 34890, 29690, 19039, -17742, -74002, -183563, -333665, -572271, -866683, -1271429, -1698491, -2181207
OFFSET
0,4
COMMENTS
Convolution inverse of A261049.
FORMULA
G.f.: Product_{k>=1} 1/(1 + x^k)^A000041(k).
MATHEMATICA
nmax = 43; CoefficientList[Series[Product[1/(1 + x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) d PartitionsP[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 43}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 18 2018
STATUS
approved