login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Product_{k>=1} 1/(1 + x^k)^p(k), where p(k) = number of partitions of k (A000041).
1

%I #4 May 18 2018 19:48:23

%S 1,-1,-1,-2,0,-1,2,3,11,8,19,13,22,-5,-10,-80,-105,-246,-303,-502,

%T -506,-681,-400,-231,873,1956,4733,7536,12891,17609,25188,29508,34890,

%U 29690,19039,-17742,-74002,-183563,-333665,-572271,-866683,-1271429,-1698491,-2181207

%N Expansion of Product_{k>=1} 1/(1 + x^k)^p(k), where p(k) = number of partitions of k (A000041).

%C Convolution inverse of A261049.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PartitionFunctionP.html">Partition Function P</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F G.f.: Product_{k>=1} 1/(1 + x^k)^A000041(k).

%t nmax = 43; CoefficientList[Series[Product[1/(1 + x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) d PartitionsP[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 43}]

%Y Cf. A000041, A001970, A089254, A261049, A300508.

%K sign

%O 0,4

%A _Ilya Gutkovskiy_, May 18 2018