OFFSET
0,3
REFERENCES
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
FORMULA
G.f. = G(t,z)=(1+z)(1-z)^2/[(1-z)(1-2z^2)-2tz].
G.f. of column k is 2^k*z^k*(1+z)/[(1-2z^2)^{k+1}*(1-z)^{k-1}] (we have a Riordan array).
EXAMPLE
T(2,1)=2 because we have (0/2) and (2/0) (the 2-compositions are written as (top row/bottom row).
Triangle starts:
1;
0,2;
1,2,4;
0,8,8,8;
2,8,32,24,16;
MAPLE
G := (1+z)*(1-z)^2/((1-z)*(1-2*z^2)-2*t*z): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 13 2010
STATUS
approved