login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097864
Matrix recurrence A[n] = M * A[n-1] with A[0] = [[0,1,1],[1,1,2],[1,2,4]] and M = [[0,1,0],[0,1,0],[1,1,1]], flattened.
0
0, 1, 1, 1, 1, 2, 1, 2, 4, 1, 1, 2, 1, 1, 2, 2, 4, 7, 1, 1, 2, 1, 1, 2, 4, 6, 11, 1, 1, 2, 1, 1, 2, 6, 8, 15, 1, 1, 2, 1, 1, 2, 8, 10, 19, 1, 1, 2, 1, 1, 2, 10, 12, 23, 1, 1, 2, 1, 1, 2, 12, 14, 27, 1, 1, 2, 1, 1, 2, 14, 16, 31, 1, 1, 2, 1, 1, 2, 16, 18, 35, 1, 1, 2, 1, 1, 2, 18, 20, 39, 1, 1, 2, 1, 1, 2
OFFSET
0,6
COMMENTS
Previous name was: The n-th group (n>=0) of 9 consecutive terms are the entries, read by rows, of the 3 X 3 matrix A[n]=M*A[n-1], where M is the 3 X 3 matrix [[0,1,0],[0,1,0],[1,1,1]] and A[0] is the 3 X 3 matrix [[0,1,1],[1,1,2],[1,2,4]].
FORMULA
a(n) = 2*a(n-9) - a(n-18) for n >= 27. - R. J. Mathar, Oct 31 2008
MAPLE
with(linalg):
nmax:=50: M:=matrix(3, 3, [0, 1, 0, 0, 1, 0, 1, 1, 1]): A[0]:=matrix(3, 3, [0, 1, 1, 1, 1, 2, 1, 2, 4]): for n from 1 to nmax do A[n]:=multiply(M, A[n-1]) od:
seq(seq(seq(A[k][i, j], j=1..3), i=1..3), k=0..nmax);
# Georg Fischer, Jan 17 2021
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {0, 1, 1, 1, 1, 2, 1, 2, 4, 1, 1, 2, 1, 1, 2, 2, 4, 7, 1, 1, 2, 1, 1, 2, 4, 6, 11}, 96] (* Georg Fischer, Jan 17 2021 *)
CROSSREFS
Sequence in context: A143446 A110330 A132014 * A097866 A097865 A105245
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Aug 30 2004
EXTENSIONS
Edited by N. J. A. Sloane, May 13 2006
Definition changed by Georg Fischer, Jan 17 2021
STATUS
approved