login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Matrix recurrence A[n] = M * A[n-1] with A[0] = [[0,1,1],[1,1,2],[1,2,4]] and M = [[0,1,0],[0,1,0],[1,1,1]], flattened.
0

%I #31 Jan 18 2021 09:37:42

%S 0,1,1,1,1,2,1,2,4,1,1,2,1,1,2,2,4,7,1,1,2,1,1,2,4,6,11,1,1,2,1,1,2,6,

%T 8,15,1,1,2,1,1,2,8,10,19,1,1,2,1,1,2,10,12,23,1,1,2,1,1,2,12,14,27,1,

%U 1,2,1,1,2,14,16,31,1,1,2,1,1,2,16,18,35,1,1,2,1,1,2,18,20,39,1,1,2,1,1,2

%N Matrix recurrence A[n] = M * A[n-1] with A[0] = [[0,1,1],[1,1,2],[1,2,4]] and M = [[0,1,0],[0,1,0],[1,1,1]], flattened.

%C Previous name was: The n-th group (n>=0) of 9 consecutive terms are the entries, read by rows, of the 3 X 3 matrix A[n]=M*A[n-1], where M is the 3 X 3 matrix [[0,1,0],[0,1,0],[1,1,1]] and A[0] is the 3 X 3 matrix [[0,1,1],[1,1,2],[1,2,4]].

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1).

%F a(n) = 2*a(n-9) - a(n-18) for n >= 27. - _R. J. Mathar_, Oct 31 2008

%p with(linalg):

%p nmax:=50: M:=matrix(3, 3, [0, 1, 0, 0, 1, 0, 1, 1, 1]): A[0]:=matrix(3, 3, [0, 1, 1, 1, 1, 2, 1, 2, 4]): for n from 1 to nmax do A[n]:=multiply(M, A[n-1]) od:

%p seq(seq(seq(A[k][i, j], j=1..3), i=1..3), k=0..nmax);

%p # _Georg Fischer_, Jan 17 2021

%t LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {0, 1, 1, 1, 1, 2, 1, 2, 4, 1, 1, 2, 1, 1, 2, 2, 4, 7, 1, 1, 2, 1, 1, 2, 4, 6, 11}, 96] (* _Georg Fischer_, Jan 17 2021 *)

%K nonn,easy,less

%O 0,6

%A _Roger L. Bagula_, Aug 30 2004

%E Edited by _N. J. A. Sloane_, May 13 2006

%E Definition changed by _Georg Fischer_, Jan 17 2021