The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167560 The ED2 array read by antidiagonals 14
 1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The coefficients in the upper right triangle of the ED2 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED2 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1). The ED2 array is related to the EG1 matrix, see A162005, because sum(EG1(2*m-1,n) * z^(2*m-1), m=1..infinity) = ((2*n-1)!/(4^(n-1)*(n-1)!^2))*int(sinh(y*(2*z))/cosh(y)^(2*n), y=0..infinity). For the ED1, ED3 and ED4 arrays see A167546, A167572 and A167584. LINKS Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013. FORMULA a(n,m) = ((m-1)!/((m-n-1)!))*int(sinh(y*(2*n))/(cosh(y))^(2*m),y=0..infinity) for m>n. The (n-1)-differences of the n-th array row lead to the recurrence relation sum((-1)^k*binomial(n-1,k)*a(n-1,m-k),k=0..n-1) = n! which in its turn leads to, see A167569, a(n,m) = 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! if m<=n. EXAMPLE The ED2 array begins with: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 6, 16, 32, 54, 82, 116, 156, 202, 254, 312 24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560 120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864 720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080 MAPLE nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n, m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n, m):= n! + sum((-1)^(k-1)*binomial(n-1, k)*a(n, m-k), k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n, m):=a(n-m+1, m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n, m): T:=T+1: od: od: seq(a(n), n=1..T-1); MATHEMATICA nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *) CROSSREFS A000012, A005843 (n>=1), 2*A104249 (n>=1), A167561, A167562 and A167563 equal the first sixth rows of the array. A000142 equals the first column of the array. A047053 equals the a(n, n) diagonal of the array. 2*A034177 equals the a(n+1, n) diagonal of the array. A167570 equals the a(n+2, n) diagonal of the array, A167564 equals the row sums of the ED2 array read by antidiagonals. A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array. A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array. A167569 is the lower left triangle of the ED2 array. Cf. A162005 (EG1 triangle). Cf. A167546 (ED1 array), A167572 (ED3 array), A167584 (ED4 array). Sequence in context: A080245 A080247 A078937 * A132159 A112356 A135885 Adjacent sequences:  A167557 A167558 A167559 * A167561 A167562 A167563 KEYWORD easy,nonn,tabl AUTHOR Johannes W. Meijer, Nov 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 18:27 EDT 2020. Contains 337432 sequences. (Running on oeis4.)