login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167557
The lower left triangle of the ED1 array A167546.
5
1, 1, 4, 2, 12, 32, 6, 48, 160, 384, 24, 240, 960, 2688, 6144, 120, 1440, 6720, 21504, 55296, 122880, 720, 10080, 53760, 193536, 552960, 1351680, 2949120, 5040, 80640, 483840, 1935360, 6082560, 16220160, 38338560, 82575360
OFFSET
1,3
COMMENTS
We discovered that the numbers that appear in the lower left triangle of the ED1 array A167546 (m <= n) behave in a regular way, see the formula below. This rather simple regularity doesn't show up in the upper right triangle of the ED1 array (m > n).
FORMULA
a(n,m) = 4^(m-1)*(m-1)!*(n+m-2)!/(2*m-2)!.
EXAMPLE
The first few triangle rows are:
[1]
[1, 4]
[2, 12, 32]
[6, 48, 160, 384]
[24, 240, 960, 2688, 6144]
[120, 1440, 6720, 21504, 55296, 122880]
MAPLE
a := proc(n, m): 4^(m-1)*(m-1)!*(n+m-2)!/(2*m-2)! end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 23 2012
MATHEMATICA
Flatten[Table[(4^(m-1) (m-1)!(n+m-2)!)/(2m-2)!, {n, 10}, {m, n}]] (* Harvey P. Dale, Sep 29 2013 *)
CROSSREFS
A167546 is the ED1 array.
A047053 and A167558 are the first two right hand triangle columns.
A000142, 4*A001710 (n>=2), 32*A001720, 384*A001730, 6144*A049389, 122880*A051431 are the first six left hand triangle columns.
A167559 equals the row sums.
Sequence in context: A058095 A105196 A372493 * A069836 A224820 A125153
KEYWORD
easy,nonn,tabl
AUTHOR
Johannes W. Meijer, Nov 10 2009
STATUS
approved