login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058095
McKay-Thompson series of class 9c for the Monster group.
4
1, -4, 2, 12, -21, 4, 36, -68, 21, 112, -184, 44, 275, -456, 112, 644, -1019, 240, 1370, -2156, 514, 2828, -4340, 992, 5498, -8392, 1930, 10428, -15675, 3528, 19060, -28472, 6399, 34072, -50382, 11184, 59333, -87260, 19312, 101496, -148148, 32480, 170130, -247156
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of q^(1/3) * 3 * b(q) / c(q) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of q^(1/3) * (eta(q) / eta(q^3))^4 in powers of q. - Michael Somos, Mar 24 2007
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u+v)^3 - u*v * (u+3) * (v+3) .
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*v^2 + v^2*w^2 - v*u^2*w^2 + u*w*v^2 - 9*u*w * (u+w).
G.f.: (Product_{k>0} (1 + x^k + x^(2*k)))^-4.
Euler transform of period 3 sequence [ -4, -4, 0, ...]. - Michael Somos, Mar 24 2007
a(n) = A112146(3*n - 1). Convolution inverse of A128758.
EXAMPLE
G.f. = 1 - 4*x + 2*x^2 + 12*x^3 - 21*x^4 + 4*x^5 + 36*x^6 - 68*x^7 + ...
T9c = 1/q - 4*q^2 + 2*q^5 + 12*q^8 - 21*q^11 + 4*q^14 + 36*q^17 - 68*q^20 + ...
MATHEMATICA
a[0] = 1; a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[(QPochhammer[x + A]/QPochhammer[x^3 + A])^4, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 06 2015, adapted from Michael Somos's PARI script *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^3 + A))^4, n))}; /* Michael Somos, Mar 24 2007 */
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved