login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128758
Expansion of q^(-1/3) * (eta(q^3) / eta(q))^4 in powers of q.
6
1, 4, 14, 36, 89, 196, 416, 828, 1600, 2972, 5390, 9504, 16436, 27828, 46364, 75960, 122772, 195728, 308430, 480456, 740921, 1131364, 1712348, 2569500, 3825641, 5652872, 8294612, 12089016, 17508609, 25204428, 36076540, 51355368, 72725909
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
O. Kolberg, The coefficients of j(tau) modulo powers of 3, Acta Univ. Bergen., Series Math., Arbok for Universitetet I Bergen, Mat.-Naturv. Serie, 1962 No. 16, pp. 1-7. See v, page 1.
LINKS
FORMULA
Expansion of q^(-1/3) * (1/3) * c(q) / b(q) in powers of q where b(), c() are cubic AGM theta functions.
Euler transform of period 3 sequence [ 4, 4, 0, ...].
Given g.f. A(x), then B(q) = q*A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u+v)^3 - u*v * (1+3*u) * (1+3*v).
Given g.f. A(x), then B(q)= q*A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2 + w^2 + u*w - v - 9*v^2 * (u+w).
G.f.: (Product_{k>0} (1 + x^k + x^(2*k)) )^4.
9*a(n) = A112146(3*n + 1).
a(n) ~ exp(4*Pi*sqrt(n)/3) / (9*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
EXAMPLE
G.f. = 1 + 4*x + 14*x^2 + 36*x^3 + 89*x^4 + 196*x^5 + 416*x^6 + 828*x^7 + ...
G.f. = q + 4*q^4 + 14*q^7 + 36*q^10 + 89*q^13 + 196*q^16 + 416*q^19 + ...
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1-x^(3*k)) / (1-x^k))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; c:= q^(1/3)*(eta[q]/eta[q^3])^4; a:= CoefficientList[Series[1/c, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 04 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x + A))^4, n))};
CROSSREFS
Cf. A112146.
Sequence in context: A187091 A034528 A332834 * A341384 A258343 A317148
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 24 2007
STATUS
approved