The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128760 Number of ways to write n as the absolute difference of a power of 2 and a power of 3. 3
 1, 4, 1, 1, 0, 3, 0, 3, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(A014121(n)) > 0; the only even numbers m with a(m)>0 are of the form m=3^k-1: a(A024023(n)) > 0; Conjecture: there exists c>=23 such that a(n)<2 for n>c. LINKS Max Alekseyev, Table of n, a(n) for n = 0..1000 EXAMPLE a(1) = #{2^1 - 3^0, 2^2 - 3^1, 3^1 - 2^1, 3^2 - 2^3} = 4; a(2) = #{3^1 - 2^0} = 1; a(3) = #{2^2 - 3^0} = 1; a(5) = #{2^3 - 3^1, 2^5 - 3^3, 3^2 - 2^2} = 3; a(7) = #{2^3 - 3^0, 2^4 - 3^2, 3^2 - 2^1} = 3; a(8) = #{3^2 - 2^0} = 1; a(11) = #{3^3 - 2^4} = 1; a(13) = #{2^4 - 3^1, 2^8 - 3^5} = 2; a(15) = #{2^4 - 2^0} = 1; a(17) = #{3^4 - 2^6} = 1; a(19) = #{3^3 - 2^3} = 1; a(23) = #{2^5 - 3^2, 3^3 - 2^2} = 2; a(25) = #{3^3 - 2^1} = 1. CROSSREFS Cf. A000079, A000244. Sequence in context: A158972 A278987 A135302 * A057884 A329637 A276834 Adjacent sequences:  A128757 A128758 A128759 * A128761 A128762 A128763 KEYWORD nonn AUTHOR Reinhard Zumkeller, Mar 25 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 02:26 EDT 2021. Contains 345016 sequences. (Running on oeis4.)