OFFSET
0,4
COMMENTS
LINKS
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 40 sequence [ 1, 0, 1, -1, 0, 0, 1, 0, 1, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, -1, 1, 0, 1, 0, 1, 0, 0, -1, 1, 0, 1, 0, ...].
Given g.f. A(x), then B(q) = q*A(q^2) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) - 3*u*v * (u^2 + v^2).
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(20*k)) / ( (1 + x^(4*k)) * (1+x^(5*k))).
Convolution inverse of A128763.
a(n) ~ exp(Pi*sqrt(n/5)) / (2^(3/2) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + ...
G.f. = q + q^3 + q^5 + 2*q^7 + q^9 + q^11 + 2*q^13 + 2*q^15 + 2*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5, - x^5] QPochhammer[ x^10, -x^10]) / (QPochhammer[ x, -x] QPochhammer[ x^2, -x^2]), {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 40; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(20*k)) / ( (1 + x^(4*k)) * (1+x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^8 + A) * eta(x^10 + A) * eta(x^20 + A) / (eta(x^2 + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^40 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 25 2007
STATUS
approved