login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128762
Expansion of chi(q) * chi(q^2) / (chi(q^5) * chi(q^10)) in powers of q where chi() is a Ramanujan theta function.
1
1, 1, 1, 2, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 6, 6, 8, 9, 10, 12, 14, 15, 17, 20, 21, 23, 26, 30, 32, 37, 42, 44, 50, 56, 60, 66, 74, 80, 88, 98, 109, 119, 130, 144, 154, 167, 184, 200, 218, 241, 262, 284, 308, 334, 362, 390, 426, 462, 498, 542, 589, 633, 685, 742, 796, 858
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Euler transform of period 40 sequence [ 1, 0, 1, -1, 0, 0, 1, 0, 1, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, -1, 1, 0, 1, 0, 1, 0, 0, -1, 1, 0, 1, 0, ...].
Given g.f. A(x), then B(q) = q*A(q^2) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) - 3*u*v * (u^2 + v^2).
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(20*k)) / ( (1 + x^(4*k)) * (1+x^(5*k))).
Convolution inverse of A128763.
a(n) ~ exp(Pi*sqrt(n/5)) / (2^(3/2) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + ...
G.f. = q + q^3 + q^5 + 2*q^7 + q^9 + q^11 + 2*q^13 + 2*q^15 + 2*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5, - x^5] QPochhammer[ x^10, -x^10]) / (QPochhammer[ x, -x] QPochhammer[ x^2, -x^2]), {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 40; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(20*k)) / ( (1 + x^(4*k)) * (1+x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^8 + A) * eta(x^10 + A) * eta(x^20 + A) / (eta(x^2 + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^40 + A)), n))};
CROSSREFS
Cf. A128763.
Sequence in context: A029255 A029272 A153904 * A096396 A126307 A320838
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 25 2007
STATUS
approved