login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A096396
a(n) = #{ 0 <= i <= n: K(n, i) = +1 } where K(n, i) is the Kronecker symbol.
7
0, 2, 1, 1, 2, 2, 2, 5, 2, 6, 3, 6, 2, 6, 5, 7, 8, 8, 3, 10, 4, 6, 6, 14, 4, 20, 9, 9, 6, 14, 6, 21, 8, 10, 10, 14, 12, 18, 12, 18, 8, 20, 8, 21, 10, 12, 13, 28, 8, 42, 11, 18, 12, 26, 10, 29, 12, 18, 15, 32, 8, 30, 19, 19, 32, 24, 14, 32, 16, 22, 14, 42, 12, 36, 23, 22, 18, 30, 14, 50, 16
OFFSET
0,2
LINKS
FORMULA
From Reinhard Zumkeller, Mar 24 2012: (Start)
a(n) = A000010(n) - A096397(n) for n >= 2.
a(n) = A071961(n) + A096397(n). (End)
MAPLE
K := (n, k) -> NumberTheory:-KroneckerSymbol(n, k):
seq(nops(select(k -> K(n, k) = 1, [seq(0..n)])), n = 0..80);
# Peter Luschny, May 15 2024
MATHEMATICA
Table[Count[Table[KroneckerSymbol[n, k], {k, 0, n}], 1], {n, 0, 80}]
(* Peter Luschny, May 15 2024 *)
PROG
(PARI) a(n) = sum(i=0, n, if(kronecker(n, i) - 1, 0, 1))
(SageMath)
print([sum(kronecker(n, k) == 1 for k in range(n + 1)) for n in range(81)])
# Peter Luschny, May 16 2024
CROSSREFS
Cf. this sequence (#K(n,i)=1), A096397 (#K(n,i)=-1), A062830 (#K(n,i)=0).
Sequence in context: A029272 A153904 A128762 * A126307 A320838 A092332
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Aug 06 2004
EXTENSIONS
Typo in definition fixed by Reinhard Zumkeller, Mar 24 2012
Offset set to 0, a(0) = 0 added, a(1) and name adapted by Peter Luschny, May 15 2024
STATUS
approved