|
|
A096399
|
|
Numbers k such that both k and k+1 are abundant.
|
|
34
|
|
|
5775, 5984, 7424, 11024, 21735, 21944, 26144, 27404, 39375, 43064, 49664, 56924, 58695, 61424, 69615, 70784, 76544, 77175, 79695, 81080, 81675, 82004, 84524, 84644, 89775, 91664, 98175, 103455, 104895, 106784, 109395, 111824, 116655
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k such that both sigma(k) > 2k and sigma(k+1) > 2*(k+1).
Numbers k such that both k and k+1 are in A005101.
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 3, 27, 357, 3723, 36640, 365421, 3665799, 36646071, ... . Apparently, the asymptotic density of this sequence exists and equals 0.000366... . - Amiram Eldar, Sep 02 2022
|
|
LINKS
|
|
|
EXAMPLE
|
sigma(5775) = sigma(3*5*5*7*11) = 11904 > 2*5775.
sigma(5776) = sigma(2*2*2*2*19*19) = 11811 > 2*5776.
|
|
MAPLE
|
with(numtheory): P:=proc(n); if sigma(n)>2*n and sigma(n+1)>2*(n+1) then n;
|
|
MATHEMATICA
|
fQ[n_] := DivisorSigma[1, n] > 2 n; Select[ Range@ 117000, fQ[ # ] && fQ[ # + 1] &] (* Robert G. Wilson v, Jun 11 2010 *)
Select[Partition[Select[Range[120000], DivisorSigma[1, #] > 2 # &], 2, 1], Differences@ # == {1} &][[All, 1]] (* Michael De Vlieger, May 20 2017 *)
|
|
PROG
|
(PARI) for(i=1, 1000000, if(sigma(i)>2*i && sigma(i+1)>2*(i+1), print(i))); \\ Max Alekseyev, Jan 28 2005
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|